如圖,在單位長(zhǎng)度為1的正方形網(wǎng)格中建立一直角坐標(biāo)系,一條圓弧經(jīng)過(guò)網(wǎng)格點(diǎn)A、B、C,請(qǐng)?jiān)诰W(wǎng)格圖中進(jìn)行下列操作(以下結(jié)果保留根號(hào)):
(1)利用網(wǎng)格確定該圓弧所在圓的圓心D點(diǎn)的位 置,并寫(xiě)出D點(diǎn)的坐標(biāo)為 ;
(2)連接AD、CD,則⊙D的半徑為 ∠ADC的度數(shù)為 ;
(3)若扇形DAC是一個(gè)圓錐的側(cè)面展開(kāi)圖,求該圓錐底面半徑.
(1)作圖略,D(2,1); (2) ; (3)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知拋物線(xiàn)y=x2+bx+c(b,c是常數(shù),且c<0)與x軸分別交于點(diǎn)A,B(點(diǎn)A位于點(diǎn)B的左側(cè)),與y軸的負(fù)半軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(-1,0).
(1)b= ,點(diǎn)B的橫坐標(biāo)為 (上述結(jié)果均用含c的代數(shù)式表示);
(2)連接BC,過(guò)點(diǎn)A作直線(xiàn)AE∥BC,與拋物線(xiàn)y=x2+bx+c交于點(diǎn)E.點(diǎn)D是x軸上一點(diǎn),其坐標(biāo)為(2,0),當(dāng)C,D,E三點(diǎn)在同一直線(xiàn)上時(shí),求拋物線(xiàn)的解析式;
(3)在(2)的條件下,點(diǎn)P是x軸下方的拋物線(xiàn)上的一動(dòng)點(diǎn),連接PB,PC,設(shè)所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如果,E、F、G、H分別是四邊形ABCD四條邊的中點(diǎn),要使EFGH為菱形,四邊形
應(yīng)該具備的條件是 ( )
A.一組對(duì)邊平行而另一組對(duì)邊不平行 B.對(duì)角線(xiàn)相等
C.對(duì)角線(xiàn)互相垂直 D.對(duì)角線(xiàn)互相平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖已知E、F分別是□ABCD的邊BC、AD上的點(diǎn),且BE=DF.
(1) 求證:四邊形AECF是平行四邊形;
(2) 若BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長(zhǎng) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
一個(gè)兩位數(shù)是,還有一個(gè)三位數(shù)是,如果把這個(gè)兩位數(shù)放在這個(gè)三位數(shù)的前面,組成一個(gè)五位數(shù),則這個(gè)五位數(shù)的表示方法是 ( )
B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com