【題目】如圖1,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A(﹣1,0)和點(diǎn)B(3,0).P為該拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式.
(2)將該拋物線沿y軸向下平移AB個(gè)單位長(zhǎng)度,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P′,若OP=OP′,求△OP P′的面積.
(3)如圖2,連接AP,BP,設(shè)△APB的面積為S,當(dāng)-2≤m≤2時(shí),直接寫(xiě)出S的最大值.
【答案】(1);(2)或;(3)S的最大值為5
【解析】
(1)利用待定系數(shù)法即可求出拋物線的解析式;
(2)先根據(jù)A,B的坐標(biāo)求出AB的長(zhǎng)度,進(jìn)而可求出拋物線平移的距離,根據(jù)OP=OP′可得出x軸是PP′的垂直平分線,從而可知P點(diǎn)的縱坐標(biāo),代入拋物線的解析式中即可求出相應(yīng)的橫坐標(biāo),最后利用面積公式即可求解;
(3)設(shè)點(diǎn)P的縱坐標(biāo)為y,根據(jù)題意得,然后分兩種情況,當(dāng)點(diǎn)P在x軸上方時(shí)和點(diǎn)P在x軸下方時(shí),分別求出y的最大值,進(jìn)而分別求出S的最大值,最終即可確定答案.
解:(1)將代入中,得
解得
∴則該拋物線的解析式為;
(2)∵,
∴AB=4,
,
∴拋物線是向下平移了2個(gè)單位長(zhǎng)度, PP′=2.
∵OP=OP′
∴x軸是PP′的垂直平分線,
∴點(diǎn)P的縱坐標(biāo)為1.
當(dāng)y=1時(shí),,
解得 ,
∴ 或,
∴△O PP′的面積為或;
(3)S的最大值為5,理由如下:
將拋物線轉(zhuǎn)換成頂點(diǎn)式,得.
設(shè)點(diǎn)P的縱坐標(biāo)為y,
由題意得,
當(dāng)點(diǎn)P在x軸上方時(shí),m=1時(shí),取最大值,
∵當(dāng)時(shí),,
∴S的最大值為;
當(dāng)點(diǎn)P在x軸下方時(shí),時(shí),取最大值,
∵當(dāng)時(shí), ,
∴S的最大值為;
∴當(dāng) 時(shí),S的最大值為5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一列快車(chē)從甲地駛往乙地,一列慢車(chē)從乙地駛往甲地,兩車(chē)同時(shí)出發(fā),設(shè)慢車(chē)行駛的時(shí)間為,兩車(chē)之間的距離為),圖中的折線表示與之間的函數(shù)關(guān)系,根據(jù)圖象進(jìn)行探究:
(1)甲、乙兩地之間的距離為 ;
(2)請(qǐng)解釋圖中點(diǎn)的實(shí)際意義:__________;
(3)求線段所表示的與之間的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視熱播節(jié)目“朗讀者”激發(fā)了學(xué)生的閱讀興趣,某校為滿足學(xué)生的閱讀需求,欲購(gòu)進(jìn)一批學(xué)生喜歡的圖書(shū),學(xué)校組織學(xué)生會(huì)成員隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,被調(diào)查學(xué)生須從“文史類、社科類、小說(shuō)類、生活類”中選擇自己喜歡的一類,根據(jù)調(diào)查結(jié)果繪制了統(tǒng)計(jì)圖(未完成),請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了 名學(xué)生;
(2)將條形統(tǒng)計(jì)圖1補(bǔ)充完整;
(3)圖2中“小說(shuō)類”所在扇形的圓心角為 度;
(4)若該校共有學(xué)生2000人,估計(jì)該校喜歡“社科類”書(shū)籍的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形OABC在平面直角坐標(biāo)系中的位置如圖所示,O為坐標(biāo)原點(diǎn),點(diǎn)B的坐標(biāo)為(10,8),連接AC,已知反比例函數(shù)y=(m≠0)在第一象限的圖象經(jīng)過(guò)矩形OABC的對(duì)角線的交點(diǎn)D,并交BC于點(diǎn)E,交AB于點(diǎn)F.
(1)求線段AC所在直線的解析式和m的值.
(2)連接OE,OF,EF,求△OEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△AOB,點(diǎn)C是邊AO所在直線上的動(dòng)點(diǎn),點(diǎn)D是x軸上的動(dòng)點(diǎn),在矩形CDEF中,CD=6,DE=,則OF的最小值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,連接BD,點(diǎn)E在AB上,連接CE交BD于點(diǎn)F,作FG⊥BC于點(diǎn)G,∠BEC=3∠BCE,BF=DF,若FG=,則AB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 是⊙ O 的直徑,點(diǎn) C 是⊙ O 上的一點(diǎn),點(diǎn) D 是弧 BC 的中點(diǎn),連接 AC, BD,過(guò)點(diǎn) D 作 AC 的垂線 EF,交 AC 的延長(zhǎng)線于點(diǎn) E,交 AB 的延長(zhǎng)線于點(diǎn) F..
(1)依題意補(bǔ)全圖形;
(2)判斷直線 EF 與⊙ O 的位置關(guān)系,并說(shuō)明理由
(3)若 AB=5,BD=3,求線段 BF 的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線經(jīng)過(guò)點(diǎn),且拋物線上任意不同兩點(diǎn)都滿足:當(dāng)時(shí),;當(dāng)時(shí),;拋物線與軸另一個(gè)交點(diǎn)為,與軸交于點(diǎn),對(duì)稱軸與軸交于點(diǎn).
(1)求拋物線的對(duì)稱軸及點(diǎn)的坐標(biāo);
(2)過(guò)點(diǎn)作軸的平行線交拋物線的對(duì)稱軸于點(diǎn),當(dāng)四邊形是正方形時(shí),求拋物線的解析式;
(3)在(2)的條件下,垂直于軸的直線與拋物線交于點(diǎn)和,與直線交于點(diǎn),若,結(jié)合函數(shù)的圖象,直接寫(xiě)出的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com