已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸x=-1,給出下列結(jié)果①b2>4ac;②abc>0;③2a+b=0;④c>-15a,則正確的結(jié)論個數(shù)是( 。
分析:根據(jù)拋物線與x軸交點的個數(shù)對①進(jìn)行判斷;
由拋物線開口方向得a>0,由對稱軸為直線x=-
b
2a
<0,可得到b>0,根據(jù)拋物線與y軸的交點在x軸下方得到c<0,于是可對②進(jìn)行判斷;
根據(jù)對稱軸為直線x=-
b
2a
=-1,得到2a-b=0可對③進(jìn)行判斷;
根據(jù)x=3時,y>0,得到9a+3b+c>0,再把b=2a代入則可對④進(jìn)行判斷.
解答:解:∵拋物線與x軸有兩個交點,
∴b2-4ac>0,即b2>4ac>,所以①正確;
∵拋物線開口向上,
∴a>0,
∵對稱軸為直線x=-
b
2a
<0,
∴b>0,
∵拋物線與y軸的交點在x軸下方,
∴c<0,
∴abc<0,所以②錯誤;
又∵對稱軸為直線x=-
b
2a
=-1,
∴2a-b=0,所以③錯誤;
∵x=3時,y>0,
∴9a+3b+c>0,而b=2a,
∴9a+6a+c>0,即c>-15a,所以④正確.
故選B.
點評:本題考查了二次函數(shù)的圖象與系數(shù)的關(guān)系:二次函數(shù)y=ax2+bx+c(a≠0)的圖象為拋物線,當(dāng)a>0,拋物線開口向上;對稱軸為直線x=-b2a;拋物線與y軸的交點坐標(biāo)為(0,c);當(dāng)b2-4ac>0,拋物線與x軸有兩個交點;當(dāng)b2-4ac=0,拋物線與x軸有一個交點;當(dāng)b2-4ac<0,拋物線與x軸沒有交點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、已知二次函數(shù)y=a(x+1)2+c的圖象如圖所示,則函數(shù)y=ax+c的圖象只可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y=ax+bx+c的圖象與x軸交于點A.B,與y軸交于點 C.

(1)寫出A. B.C三點的坐標(biāo);(2)求出二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省廣州市海珠區(qū)九年級上學(xué)期期末數(shù)學(xué)試卷(解析版) 題型:選擇題

已知二次函數(shù)y=ax²+bx+c(a≠0)的圖像如圖所示,則下列結(jié)論中正確的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一個根

C.a+b+c=0          D.當(dāng)x<1時,y隨x的增大而減小

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知二次函數(shù)y=ax+bx+c(a≠0,a,b,c為常數(shù)),對稱軸為直線x=1,它的部分自變量與函數(shù)值y的對應(yīng)值如下表,寫出方程ax2+bx+c=0的一個正數(shù)解的近似值________(精確到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=ax²+bx+c(c≠0)的圖像如圖4所示,下列說法錯誤的是:

(A)圖像關(guān)于直線x=1對稱

(B)函數(shù)y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的兩個根

(D)當(dāng)x<1時,y隨x的增大而增大

查看答案和解析>>

同步練習(xí)冊答案