如圖,△ABC內(nèi)接于⊙O,∠B=90°,AB=BC,D是⊙O上與點(diǎn)B關(guān)于圓心O成中心對(duì)稱(chēng)的點(diǎn),P是BC邊上一點(diǎn),連接AD、DC、AP.已知AB=8,CP=2,Q是線(xiàn)段AP上一動(dòng)點(diǎn),連接BQ并延長(zhǎng)交四邊形ABCD的一邊于點(diǎn)R,且滿(mǎn)足AP=BR,則的值為   
【答案】分析:先證明四邊形ABCD是正方形,得出AD∥BC.根據(jù)題意,可知點(diǎn)R所在的位置可能有兩種情況:①點(diǎn)R在線(xiàn)段AD上;②點(diǎn)R在線(xiàn)段CD上.針對(duì)每一種情況,分別求出BQ:QR的值.
解答:解:∵△ABC內(nèi)接于⊙O,∠B=90°,AB=BC,D是⊙O上與點(diǎn)B關(guān)于圓心O成中心對(duì)稱(chēng)的點(diǎn),
∴四邊形ABCD是正方形.
∴AD∥BC,
當(dāng)AP=BR時(shí),分兩種情況:
①點(diǎn)R在線(xiàn)段AD上,
∵AD∥BC,
∴∠ARB=∠PBR,∠RAQ=∠APB,
在△AQR與△PQB中,
,
∴△AQR≌△PQB,
∴BQ=QR
∴BQ:QR=1;
②點(diǎn)R在線(xiàn)段CD上,此時(shí)△ABP≌△BCR,
∴∠BAP=∠CBR.
∵∠CBR+∠ABR=90°,
∴∠BAP+∠ABR=90°,
∴BQ是直角△ABP斜邊上的高,
∴BQ===4.8,
∴QR=BR-BQ=10-4.8=5.2,
∴BQ:QR=4.8:5.2=
故答案為:1或
點(diǎn)評(píng):本題綜合考查了平行線(xiàn)的判定,及正方形的判定,及全等的判定及性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點(diǎn)D在A(yíng)B的延長(zhǎng)線(xiàn)上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線(xiàn),并說(shuō)明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長(zhǎng)交BC于點(diǎn)D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點(diǎn)D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊(cè)答案