精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,在△OAB中,∠OAB90,∠AOB30,OB8.以OB為一邊,在△OAB外作等邊三角形OBCDOB的中點,連接AD并延長交OCE

1】求點B的坐標

2】求證:四邊形ABCE是平行四邊形;

3】如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

【答案】

1 △OAB中,∠OAB90∠AOB30,OB8,

∴OA4,AB4。B的坐標為(4,4)。………2

2 ∵∠OAB90,∴AB⊥軸,∴AB∥EC。 又∵△OBC是等邊三角形,∴OCOB8

∵DOB的中點,即ADRt△OAB斜邊上的中線,

∴ADOD,∴∠OAD∠AOD30,∴OE4∴ECOCOE4。

∴ABEC。四邊形ABCE是平行四邊形。……………………………………………………6

3 OG,則由折疊對稱的性質,得GAGC8。

Rt△OAG中,由勾股定理,得,即,

解得,。∴OG的長為1………………………………………………………………10

【解析】

1)由在△ABO中,∠OAB=90°,∠AOB=30°OB=8,根據三角函數的知識,即可求得ABOA的長,即可求得點B的坐標;

2)首先可得CE∥AB,DOB的中點,根據直角三角形斜邊的中線等于斜邊的一半,可證得BD=AD∠ADB=60°,又由△OBC是等邊三角形,可得∠ADB=∠OBC,根據內錯角相等,兩直線平行,可證得BC∥AE,繼而可得四邊形ABCD是平行四邊形;

3)首先設OG的長為x,由折疊的性質可得:AG=CG=8-x,然后根據勾股定理可得方程(8-x2=x2+42,解此方程即可求得OG的長.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】“3·15”消費者權益日的活動中,對甲、乙兩家商場售后服務的滿意度進行了抽查.如圖反映了被抽查用戶對兩家商場售后服務的滿意程度(以下稱:用戶滿意度),分為很不滿意、不滿意、較滿意、很滿意四個等級,并依次記為1分、2分、3、4.

(1)分別求出甲、乙兩商場的用戶滿意度分數的平均值(計算結果精確到0.01).

(2)請你根據所學的統(tǒng)計知識,判斷哪家商場的用戶滿意度較高,并簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中, ABC如圖(每個小正方形的邊長均為1).

1)請畫出ABC沿x軸向右平移4個單位長度,再沿y軸向上平移2個單位長度后的A′B′C′(其中A′、B′、C分別是AB、C的對應點,不寫畫法)

2)直接寫出A、BC三點的坐標:A____,_____); B____,_____);C____,_____).

3)求A′B′C′的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某制衣廠某車間計劃用10天加工一批出口童裝和成人裝共360,該車間的加工能力是:每天能單獨加工童裝45件或成人裝30件。

(1)該車間應安排幾天加工童裝,幾天加工成人裝,才能如期完成任務?

(2)若加工童裝一件可獲利80, 加工成人裝一件可獲利120, 那么該車間加工完這批服裝后,共可獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一股民在上星期五買進某公司股票1000股,每股27元,下表為本星期內每日該股票的漲跌情況單位:元

星期

每股漲跌

星期三收盤時,每股多少元?

本星期內每股最低價多少元?

本周星期幾拋售,獲利最大,最大是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,下列說法不正確的是(   )

A. AC=BD時,四邊形ABCD是矩形

B. AB=BC時,四邊形ABCD是菱形

C. AC⊥BD時,四邊形ABCD是菱形

D. ∠DAB=90°時,四邊形ABCD是正方形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于點H,過點C作CD⊥AC,連接AD,點M為AC上一點,且AM=CD,連接BM交AH于點N,交AD于點E.

(1)若AB=3,AD= ,求△BMC的面積;
(2)點E為AD的中點時,求證:AD=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖為K90的化學賽道,其中助滑坡AB長90米,坡角a=40°,一個曲面平臺BCD連接了助滑坡AB與著陸坡,某運動員在C點飛向空中,幾秒之后落在著陸坡上的E處,已知著陸坡DE的坡度i=1: ,此運動員成績?yōu)镈E=85.5米,BD之間的垂直距離h為1米,則該運動員在此比賽中,一共垂直下降了( )米.(參考數據:sin40°≈0.64,cos40°≈0.76,tan40°≈0.84,結果保留一位小數)

A.101.4
B.101.3
C.100.4
D.100.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABCDAC平分∠BAD,CEADABE

(1)求證:四邊形AECD是菱形;

(2)若點EAB的中點,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案