(2008•天門)如圖,a∥b,∠1=105°,∠2=140°,則∠3的度數(shù)是( )

A.75°
B.65°
C.55°
D.50°
【答案】分析:如圖作出兩直線的交點,由a∥b可以推出∠1+∠4=180°,然后可以求出∠4=75°.再根據(jù)三角形的外角等于不相鄰的兩個內(nèi)角的和可以求出∠3.
解答:解:如圖作出兩直線的交點,
∵a∥b,
則∠1+∠4=180°,
∴∠4=75°,
根據(jù)三角形的外角等于不相鄰的兩個內(nèi)角的和得到∠2=∠3+∠4,
則∠3=65°.
故選B.
點評:本題主要運用了平行線的性質(zhì)定理,以及三角形的外角等于不相鄰的兩個內(nèi)角的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《圓》(13)(解析版) 題型:解答題

(2008•天門)如圖,AB為⊙O的直徑,C為⊙O上一點,∠BAC的平分線交⊙O于點D,過D點作EF∥BC交AB的延長線于點E,交AC的延長線于點F.
(1)求證:EF為⊙O的切線;
(2)若sin∠ABC=,CF=1,求⊙O的半徑及EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(01)(解析版) 題型:選擇題

(2008•天門)如圖,在平面直角坐標(biāo)系中,OABC是正方形,點A的坐標(biāo)是(4,0),點P為邊AB上一點,∠CPB=60°,沿CP折疊正方形,折疊后,點B落在平面內(nèi)點B′處,則B′點的坐標(biāo)為( )

A.(2,2
B.(
C.(2,
D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省臨沂市中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2008•天門)如圖,為了測量河兩岸A,B兩點的距離,在與AB垂直的方向上取點C,測得AC=a,∠ACB=a,那么AB等于( )

A.a(chǎn)•sinα
B.a(chǎn)•cosα
C.a(chǎn)•tanα
D.a(chǎn)•cotα

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省德州市平原縣中考數(shù)學(xué)二模試卷(解析版) 題型:選擇題

(2008•天門)如圖,在平面直角坐標(biāo)系中,OABC是正方形,點A的坐標(biāo)是(4,0),點P為邊AB上一點,∠CPB=60°,沿CP折疊正方形,折疊后,點B落在平面內(nèi)點B′處,則B′點的坐標(biāo)為( )

A.(2,2
B.(
C.(2,
D.(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江蘇省連云港市中考數(shù)學(xué)原創(chuàng)試卷大賽(14)(解析版) 題型:選擇題

(2008•天門)如圖,為了測量河兩岸A,B兩點的距離,在與AB垂直的方向上取點C,測得AC=a,∠ACB=a,那么AB等于( )

A.a(chǎn)•sinα
B.a(chǎn)•cosα
C.a(chǎn)•tanα
D.a(chǎn)•cotα

查看答案和解析>>

同步練習(xí)冊答案