如圖,因為(已知),

所以∠1=∠________(  ),

因為∠1=∠3(已知),所以∠2=∠3,

所以(  ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖所示,已知直線AM、DF,C、E分別在直線AM、DF上,小華想知道∠ACE和∠DEC是否互補,但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連接CF,再指出CF的中點O,然后連接EO并延長EO和直線AM相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補,而且他還發(fā)現(xiàn)BC=EF.以下是他的想法,請你填上根據(jù).
小華是這樣想的:
因為CF和BE相交于點O,
根據(jù)
對頂角相等
得出∠COB=∠EOF;
而O是CF的中點,那么CO=FO,又已知EO=BO,
根據(jù)
SAS
得出△COB≌△FOE,
根據(jù)
全等三角形的對應(yīng)邊相等
得出BC=EF,
根據(jù)
全等三角形的對應(yīng)角相等
得出∠BCO=∠F.
既然∠BCO=∠F,根據(jù)
內(nèi)錯角相等
得出AB∥DF,
既然AB∥DF,根據(jù)
兩直線平行,同旁內(nèi)角互補
得出∠ACE和∠DEC互補

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知AB∥CD∥EF,AC=CE,某同學(xué)在探索DB與DF的關(guān)系時,進行了下列探究:
由于AB∥CD,得出S△ACD=S△CBD;同理S△CED=S△CFD;
所以
AC
CE
=
S△ACD
S△CED
=
S△BCD
S△CFD
=
BD
DF

因為AC=CE,所以BD=DF.
(1)如果AD∥CF,你發(fā)現(xiàn)AC、CE、BD、DF之間存在怎樣的關(guān)系并說明你的猜想的正確性;
(2)利用你發(fā)現(xiàn)的結(jié)論,請你通過畫圖把已知線段MN分成2:3兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

有這樣一道題:
如圖所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,試判斷∠1與∠2的度數(shù)有怎樣的關(guān)系,并說明理由.小麗的判斷是∠1與∠2互余,這是正確的,但是她寫的說明不完整,請你給予補充.
因為BE是∠ABC的平分線,所以∠2=
1
2
∠ABC
∠ABC
.又因為CE是∠BCD的平分線,所以∠1=
1
2
∠BCD
∠BCD
,于是∠1+∠2=
1
2
∠ABC
∠ABC
+
∠BCD
∠BCD
).
而AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補,得
∠ABC
∠ABC
+
∠BCD
∠BCD
=
180°
180°
,所以∠1+∠2=90°,即∠1與∠2互余.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知AB∥CD∥EF,AC=CE,某同學(xué)在探索DB與DF的關(guān)系時,進行了下列探究:
由于AB∥CD,得出S△ACD=S△CBD;同理S△CED=S△CFD;
所以數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式=數(shù)學(xué)公式;
因為AC=CE,所以BD=DF.
(1)如果AD∥CF,你發(fā)現(xiàn)AC、CE、BD、DF之間存在怎樣的關(guān)系并說明你的猜想的正確性;
(2)利用你發(fā)現(xiàn)的結(jié)論,請你通過畫圖把已知線段MN分成2:3兩部分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖所示,已知直線AM、DF,C、E分別在直線AM、DF上,小華想知道∠ACE和∠DEC是否互補,但是他沒有帶量角器,只帶了一副三角板,于是他想了這樣一個辦法:首先連接CF,再指出CF的中點O,然后連接EO并延長EO和直線AM相交于點B,經(jīng)過測量,他發(fā)現(xiàn)EO=BO,因此他得出結(jié)論:∠ACE和∠DEC互補,而且他還發(fā)現(xiàn)BC=EF.以下是他的想法,請你填上根據(jù).
小華是這樣想的:
因為CF和BE相交于點O,
根據(jù)________得出∠COB=∠EOF;
而O是CF的中點,那么CO=FO,又已知EO=BO,
根據(jù)________得出△COB≌△FOE,
根據(jù)________得出BC=EF,
根據(jù)________得出∠BCO=∠F.
既然∠BCO=∠F,根據(jù)________得出AB∥DF,
既然AB∥DF,根據(jù)________得出∠ACE和∠DEC互補.

查看答案和解析>>

同步練習(xí)冊答案