如圖,在梯形ABCD中,AD∥BC,AB=DC,∠C=60°,BD平分∠ABC.如果AB的長為6,則這個(gè)梯形的周長為( 。
分析:求出△BDC是直角三角形,∠DBC=30°,求出DC=AB=6,求出BC=12,AD=AB=6,即可求出答案.
解答:解:∵四邊形ABCD是等腰梯形,
∴∠ABC=∠C=60°,
∵BD平分∠ABC,
∴∠ABD=∠DBC=30°,
∴∠BDC=90°,
∵AB=DC=6,
∴BC=2DC=12,
∵AD∥BC,
∴∠ADB=∠DBC=30°,
∵∠ABD=30°,
∴∠ABD=∠ADB,
∴AD=AB=6,
∴等腰梯形ABCD的周長是AD+DC+BC+AB=6+6+12+6=30,
故選C.
點(diǎn)評(píng):本題考查了等腰梯形性質(zhì),含30度角的直角三角形性質(zhì),平行線性質(zhì),等腰三角形性質(zhì)的應(yīng)用,關(guān)鍵是求出DC、AD、BC的長度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對(duì)角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個(gè)梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊(cè)答案