【題目】△ABC是不規(guī)則三角形,若線段AD把△ABC分為面積相等的兩部分,則線段AD應(yīng)該是( )
A.三角形的角平分線
B.三角形的中線
C.三角形的高
D.以上都不對
【答案】B
【解析】解:作AE⊥BC,
∴S△ABD= ×BD×AE,
S△ACD= ×CD×AE,
∵S△ABD=S△ACD ,
即 ×BD×AE= ×CD×AE,
∴BD=CD,
即線段AD是三角形的中線.
故選B
【考點精析】本題主要考查了三角形的“三線”和三角形的面積的相關(guān)知識點,需要掌握1、三角形角平分線的三條角平分線交于一點(交點在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(交點在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi);三角形的面積=1/2×底×高才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A,B,C為平面上的三點,AB=2,BC=3,AC=5,則( )
A. 可以畫一個圓,使A,B,C都在圓周上
B. 可以畫一個圓,使A,B在圓周上,C在圓內(nèi)
C. 可以畫一個圓,使A,C在圓周上,B在圓外
D. 可以畫一個圓,使A,C在圓周上,B在圓內(nèi)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時,辦公樓在建筑物的墻上留下高3米的影子CE,而當(dāng)光線與地面夾角是45°時,辦公樓頂A在地面上的影子F與墻角C有27米的距離(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.
(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠A=α°,BO,CO分別是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)是( )
A.2α°
B.(α+60)°
C.(α+90)°
D.( α+90)°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°,以斜邊AB為邊向外作正方形ABDE,且正方形的對角線交于點O,連結(jié)OC.已知AC=5,OC=6 ,則另一直角邊BC的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,在平行四邊形ABCD中,對角線AC,BD交于點O,經(jīng)過點O的直線交AB于E,交CD于F.求證:OE=OF.
(2)南沙群島是我國固有領(lǐng)土,現(xiàn)在我國南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至A處時,該島位于正東方向的B處,為了防止某國巡警干擾,就請求我國C處的魚監(jiān)船前往B處護(hù)航,測得C與AB的距離CD為20海里,已知A位于C處的南偏西60°方向上,B位于C的南偏東45°的方向上, ≈1.7,結(jié)果精確到1海里,求A、B之間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com