若點C是AB的黃金分割點,且AC>BC.則AB與AC之比是多少?

答案:略
解析:

1


提示:

ABAC并不是黃金比,而是黃金比的倒數(shù),這是容易忽略的.


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖1所示,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
s1
s
=
s2
s1
,那么稱直線l為該圖形的黃金分割線.
(1)研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點,如圖2所示,則精英家教網(wǎng)直線CD是△ABC的黃金分割線,你認為對嗎?說說你的理由;
(2)請你說明:三角形的中線是否是該三角形的黃金分割線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•黃石)如圖1,點C將線段AB分成兩部分,如果
AC
AB
=
BC
AC
,那么稱點C為線段AB的黃金分割點.某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果
S1
S
=
S2
S1
,那么稱直線l為該圖形的黃金分割線.
(1)如圖2,在△ABC中,∠A=36°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖3,請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=90°,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

1.研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點,如圖②所示,則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?

2.請你說明:三角形的中線是否也是該三角形的黃金分割線?

3.研究小組在進一步探究中發(fā)現(xiàn):過點C任意作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請你說明理由.

4.如圖④,點E是□ABCD的邊AB上的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是□ABCD的黃金分割線,請你畫一條□ABCD的黃金分割線,使它不經(jīng)過□ABCD各邊黃金分割點.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011~2012學年江蘇蘇州八年級下期期末復習(一)數(shù)學試卷(帶解析) 題型:解答題

如圖①,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點.某研究小組在進行課題學習時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.
【小題1】研究小組猜想:在△ABC中,若點D為AB邊上的黃金分割點,如圖②所示,則直線CD是△ABC的黃金分割線.你認為對嗎?為什么?
【小題2】請你說明:三角形的中線是否也是該三角形的黃金分割線?
【小題3】研究小組在進一步探究中發(fā)現(xiàn):過點C任意作一條直線交AB于點E,再過點D作直線DF∥CE,交AC于點F,連接EF,如圖③所示,則直線EF也是△ABC的黃金分割線.請你說明理由.
【小題4】如圖④,點E是□ABCD的邊AB上的黃金分割點,過點E作EF∥AD,交DC于點F,顯然直線EF是□ABCD的黃金分割線,請你畫一條□ABCD的黃金分割線,使它不經(jīng)過□ABCD各邊黃金分割點.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(湖北黃石卷)數(shù)學(解析版) 題型:解答題

如圖1,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點。某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

(1)如圖2,在△ABC中,∠A=360°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;

(2)若△ABC在(1)的條件下,如圖(3),請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;

(3)如圖4,在直角梯形ABCD中,∠D=∠C=900,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

 

查看答案和解析>>

同步練習冊答案