如圖,已知點(diǎn)B、C、D在同一條直線上,△ABC和△CDE都是等邊三角形,BE交AC于F,AD交CE于H,求證:
(1)△ACD≌△BCE;
(2)△FCH是等邊三角形(提示:可先證明△AHC≌△BFC)
分析:(1)利用等邊三角形的性質(zhì)得出條件,可證明:△BCE≌△ACD;
(2)利用△BCE≌△ACD得出∠CBF=∠CAH,再運(yùn)用平角定義得出∠BCF=∠ACH進(jìn)而得出△BCF≌△ACH因此CF=CH,再由∠ACH=60°根據(jù)“有一個(gè)角是60°的三角形是等邊三角形可得△CFH是等邊三角形.
解答:證明:(1)∵△ABC和△CDE都是等邊三角形,
∴∠BCA=∠DCE=60°,BC=AC=AB,EC=CD=ED,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
BC=AC
∠BCE=∠ACD
CE=CD
,
∴△BCE≌△ACD(SAS);

(2)∵△BCE≌△ACD,
∴∠CBF=∠CAH.
∵∠ACB=∠DCE=60°,
∴∠ACH=60°.
∴∠BCF=∠ACH,
在△BCF和△ACH中,
∠CBF=∠CAH
BC=AC
∠BCF=∠ACH

∴△BCF≌△ACH(ASA),
∴CF=CH;
∵∠ACH=60°,
∴△CFH是等邊三角形.
點(diǎn)評:本題考查了三角形全等的判定和性質(zhì)及等邊三角形的性質(zhì);普通兩個(gè)三角形全等共有四個(gè)定理,即AAS、ASA、SAS、SSS.同時(shí)還要結(jié)合等邊三角形的性質(zhì),創(chuàng)造條件證明三角形全等是正確解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知點(diǎn)D是∠ABC的平分線上一點(diǎn),點(diǎn)P在BD上,PA⊥AB,PC⊥BC,垂足分別為A,C、下列結(jié)論錯(cuò)誤的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)C為反比例函數(shù)y=-
6x
上的一點(diǎn),過點(diǎn)C向坐標(biāo)軸引垂線,垂足分別為A、B,那么四邊形AOBC的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A、B、C、D均在已知圓上,AD∥BC,AC平分∠BCD,∠ADC=120°,四邊形ABCD的周長為10cm.圖中陰影部分的面積為( 。
A、
3
2
B、
3
-
3
C、2
3
D、4
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)D為△ABC中AC邊上一點(diǎn),且AD:DC=3;4,設(shè)
BA
=
a
,
BC
b

(1)在圖中畫出向量
BD
分別在
a
,
b
方向上的分向量;
(2)試用
a
,
b
的線性組合表示向量
BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)C為AB上一點(diǎn),AC=12cm,CB=
23
AC,D、E分別為AC、AB的中點(diǎn).
(1)圖中共有
10
10
線段.
(2)求DE的長.

查看答案和解析>>

同步練習(xí)冊答案