【題目】某學(xué)校為了改善辦學(xué)條件,計劃購置一電子白板和一批筆記本電腦,經(jīng)投標,購買一塊電子白板比買三臺筆記本電腦多3000元,購買4塊電子白板和5臺筆記本電腦共需80000元.
(1)求購買一塊電子白板和一臺筆記本電腦各需多少元?
(2)根據(jù)該校實際情況需購買電子白板和筆記本電腦的總數(shù)為396臺,要求購買的總費用不超過2700000元,并購買筆記本電腦的臺數(shù)不超過購買電子白板數(shù)量的3倍,該校有哪幾種購買方案?
【答案】(1)15000,4000;(2)三種,見解析.
【解析】
(1)設(shè)購買1塊電子白板需要x元,一臺筆記本電腦需要y元,由題意得等量關(guān)系:①買1塊電子白板的錢=買3臺筆記本電腦的錢+3000元,②購買4塊電子白板的費用+5臺筆記本電腦的費用=80000元,由等量關(guān)系可得方程組,解方程組可得答案;
(2)設(shè)購買電子白板a塊,則購買筆記本電腦(396-a)臺,由題意得不等關(guān)系:①購買筆記本電腦的臺數(shù)≤購買電子白板數(shù)量的3倍;②電子白板和筆記本電腦總費用≤2700000元,根據(jù)不等關(guān)系可得不等式組,解不等式組,求出整數(shù)解即可;
解:(1)設(shè)一塊電子白板x元,一臺筆記本電腦y元.
3y+3000=x ①
4x+5y=80000 ②
把①代入②中得
4(3y+3000)+5y=80000
12y+12000+5y=80000
17y=68000
y=4000
把y=4000代入①中得
x=15000
答:一塊電子白板15000元,一臺筆記本電腦4000元.
(2) 設(shè)購買電子白板a塊,則購買筆記本電腦(396-a)臺,由題意得:
解得:,
∵a為正整數(shù),
∴a=99,100,101,則電腦依次買:297臺,296臺,295臺.
因此該校有三種購買方案:
方案一:購買筆記本電腦295臺,則購買電子白板101塊;
方案二:購買筆記本電腦296臺,則購買電子白板100塊;
方案三:購買筆記本電腦297臺,則購買電子白板99塊.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將2×2的正方形網(wǎng)格如圖所示的放置在平面直角坐標系中,每個小正方形的頂點稱為格點,每個小正方形的邊長都是1,正方形ABCD的頂點都在格點上,若直線y=kx(k≠0)與正方形ABCD有公共點,則k不可能是( )
A.3
B.2
C.1
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的推理過程,在括號內(nèi)填上推理的依據(jù),如圖:
∵∠1+∠2=180°,∠2+∠4=180°(已知)
∴∠1=∠4( )
∴c∥a( )
又∵∠2+∠3=180°(已知 )
∠3=∠6( )
∴∠2+∠6=180°( )
∴a∥b( )
∴c∥b( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,則以下四個結(jié)論中: ①△BDE是等邊三角形; ②AE∥BC; ③△ADE的周長是9; ④∠ADE=∠BDC.其中正確的序號是( 。
A.②③④B.①②④C.①②③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑為10,弦AB的長為6,M是弦AB上的一動點,則線段的OM的長的取值范圍是( )
A.3≤OM≤5
B.4≤OM≤5
C.3<OM<5
D.4<OM<5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=45°,點D是BC邊上一動點(與點B,C不重合),點E與點D關(guān)于直線AC對稱,連結(jié)AE,過點B作BF⊥ED的延長線于點F.
(1)依題意補全圖形;
(2)當AE=BD時,用等式表示線段DE與BF之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,∠1=∠2,∠C=∠D。
求證:∠A=∠F。
證明:∵∠1=∠2(已知),
又∠1=∠DMN(_______________),
∴∠2=∠_________(等量代換),
∴DB∥EC( ),
∴∠DBC+∠C=1800(兩直線平行 , ),
∵∠C=∠D( ),
∴∠DBC+ =1800(等量代換),
∴DF∥AC( ,兩直線平行),
∴∠A=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,OA=8,OB=6,C點與A點關(guān)于直線OB對稱,動點P、Q分別在線段AC、AB上(點P不與點A.C重合),滿足∠BPQ=∠BAO.
(1)當OP=_______時,△APQ≌△CBP,說明理由;
(2)當△PQB為等腰三角形時,求OP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙中,△ADC的頂點都在方格紙格點上,將△ABC向左平移1格.再向上平移1格,
(1)在圖中畫出平移后的△A′B′C′;
(2)畫出AB邊上的高CE;
(3)過點A畫BC的平行線;
(4)在圖中,若△BCQ的面積等于△BCA的面積.則圖中滿足條件且異于點A的個點Q共有_____個.(注:格點指網(wǎng)格線的交點)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com