【題目】如圖①A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DE⊥AC,B F⊥AC,若AB=CD.

(1)圖①中有    對(duì)全等三角形,并把它們寫出來(lái).

(2)求證:G是BD的中點(diǎn).

(3)若將△ABF的邊AF沿GA方向移動(dòng)變?yōu)閳D②時(shí),其余條件不變,第(2)題中的結(jié)論是否成立?如果成立,請(qǐng)予證明.

【答案】(1)3對(duì), (2)證明見(jiàn)解析;(3)成立,理由見(jiàn)解析

【解析】【試題分析】

(1)憑著直觀的感覺(jué),再作具體的分析即可;(2)要證G是BD的中點(diǎn),需要證BG=DG,兩次證明 即可;(3)將問(wèn)題(2)進(jìn)行變式,實(shí)質(zhì)沒(méi)變,證明思路同問(wèn)題(2).

【試題解析】

(1))3對(duì),

(2)

(HL)

即G是BD的中點(diǎn).

(3)仍然成立,理由:同(2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】﹣6的絕對(duì)值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若方程2x﹣kx+1=5x﹣2的解為﹣1,則k的值為( )
A.10
B.﹣4
C.﹣6
D.﹣8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平行四邊形ABCD中,∠B2A,則∠A=(  )

A. 36°B. 60°C. 45°D. 80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以點(diǎn)P(-1,0)為圓心的圓,交x軸于B、C兩點(diǎn)(BC的左側(cè)),交y軸于A、D兩點(diǎn)(AD的下方),AD=,將ABC繞點(diǎn)P旋轉(zhuǎn)180°,得到MCB.

(1)求B、C兩點(diǎn)的坐標(biāo);

(2)請(qǐng)?jiān)趫D中畫出線段MB、MC,并判斷四邊形ACMB的形狀(不必證明),求出點(diǎn)M的坐標(biāo);

(3)動(dòng)直線l從與BM重合的位置開(kāi)始繞點(diǎn)B順時(shí)針旋轉(zhuǎn),到與BC重合時(shí)停止,設(shè)直線lCM交點(diǎn)為E,點(diǎn)QBE的中點(diǎn),過(guò)點(diǎn)EEGBCG,連接MQ、QG.請(qǐng)問(wèn)在旋轉(zhuǎn)過(guò)程中∠MQG的大小是否變化?若不變,求出∠MQG的度數(shù);若變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元一次方程(m-6)x2-2x+n=0與x-(3-x)=1的解相同,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊ABC中,點(diǎn)DE分別在邊BC,AB上,且BD=AE,ADCE交于點(diǎn)F

1)求證:AD=CE;

2)求∠DFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】分解因式:2x2﹣12x+18=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】因式分解:x2﹣5x=

查看答案和解析>>

同步練習(xí)冊(cè)答案