將邊長(zhǎng)為5的正方形的每條邊五等分,連接相應(yīng)的分點(diǎn),如圖所示,則圖中所有正方形的個(gè)數(shù)為_(kāi)_______.

137
分析:原基本圖形按組成正方形的個(gè)數(shù)有:52+42+32+22+1=55;斜著數(shù)由1個(gè)小正方形組成共(2+4+6+8)×2=40個(gè),由4個(gè)小正方形組成共(1+3+5)×2+7=25個(gè),由9個(gè)小正方形組成共2+4+2+4=12個(gè),由16個(gè)小正方形組成共1+3+1=5個(gè),因此圖中所有正方形的個(gè)數(shù)為55+40+25+12+5=137個(gè).
解答:①原圖形按組成正方形的個(gè)數(shù)有:52+42+32+22+1=55;
②連接相應(yīng)的分點(diǎn),斜著數(shù)由1個(gè)小正方形組成共(2+4+6+8)×2=40個(gè),
由4個(gè)小正方形組成共(1+3+5)×2+7=25個(gè),
由9個(gè)小正方形組成共2+4+2+4=12個(gè),
由16個(gè)小正方形組成共1+3+1=5個(gè),
綜合①②圖中所有正方形的個(gè)數(shù)為55+40+25+12+5=137個(gè).
點(diǎn)評(píng):按一定的順序,按一定的方向,尋找出規(guī)律性的解決方案,使問(wèn)題得證.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

王師傅有兩塊板材邊角料,其中一塊是邊長(zhǎng)為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長(zhǎng);
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

O是邊長(zhǎng)為a的正多邊形的中心,將一塊半徑足夠長(zhǎng),圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請(qǐng)你通過(guò)觀察或測(cè)量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 
;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 

(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為
 
;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為
 
時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度仍為定值a.
(4)一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為
 
時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度為定值a.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

O是邊長(zhǎng)為a的正多邊形的中心,將一塊半徑足夠長(zhǎng),圓心角為α的扇形紙板的圓心放在O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).
(1)若正多邊形為正三角形,扇形的圓心角α=120°,請(qǐng)你通過(guò)觀察或測(cè)量,填空:
①如圖1,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為_(kāi)_______;
②如圖2,正三角形ABC的邊被扇形紙板覆蓋部分的總長(zhǎng)度為_(kāi)_______;
(2)若正多邊形為正方形,扇形的圓心角α=90°時(shí),①如圖3,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為_(kāi)_______;
②如圖4,正方形ABCD的邊被扇形紙板覆蓋部分的總長(zhǎng)度為多少?并給予證明;
(3)若正多邊形為正五邊形,如圖5,當(dāng)扇形紙板的圓心角α為_(kāi)_______時(shí),正五邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度仍為定值a.
(4)一般地,將一塊半徑足夠長(zhǎng)的扇形紙板的圓心放在邊長(zhǎng)為a的正n邊形的中心O點(diǎn)處,并將紙板繞O點(diǎn)旋轉(zhuǎn).當(dāng)扇形紙板的圓心角為_(kāi)_______時(shí),正n邊形的邊被扇形紙板覆蓋部分的總長(zhǎng)度為定值a.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第6章《二次函數(shù)》中考題集(26):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長(zhǎng)為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長(zhǎng);
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(24):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

現(xiàn)有邊長(zhǎng)為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開(kāi)口的水槽,使水槽能通過(guò)的水的流量最大.
某校九年級(jí)(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過(guò)水槽的水的流量越大.為此,他們對(duì)水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請(qǐng)你寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式(不必寫(xiě)出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請(qǐng)你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大小.
(2)假如你是該興趣小組中的成員,請(qǐng)你再提供一種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫(huà)出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫(xiě)出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案