【題目】如圖,矩形ABCD的邊AB=3cm,AD=4cm,點(diǎn)E從點(diǎn)A出發(fā),沿射線AD移動(dòng),以CE為直徑作圓O,點(diǎn)F為圓O與射線BD的公共點(diǎn),連接EF、CF,過點(diǎn)E作EG⊥EF,EG與圓O相交于點(diǎn)G,連接CG.
(1)試說明四邊形EFCG是矩形;
(2)當(dāng)圓O與射線BD相切時(shí),點(diǎn)E停止移動(dòng),在點(diǎn)E移動(dòng)的過程中, ①矩形EFCG的面積是否存在最大值或最小值?若存在,求出這個(gè)最大值或最小值;若不存在,說明理由;
②求點(diǎn)G移動(dòng)路線的長(zhǎng).
【答案】
(1)證明:如圖1,
∵CE為⊙O的直徑,
∴∠CFE=∠CGE=90°.
∵EG⊥EF,
∴∠FEG=90°.
∴∠CFE=∠CGE=∠FEG=90°.
∴四邊形EFCG是矩形.
(2)解:①存在.
連接OD,如圖2①,
∵四邊形ABCD是矩形,
∴∠A=∠ADC=90°.
∵點(diǎn)O是CE的中點(diǎn),
∴OD=OC.
∴點(diǎn)D在⊙O上.
∵∠FCE=∠FDE,∠A=∠CFE=90°,
∴△CFE∽△DAB.
∴ =( )2.
∵AD=4,AB=3,
∴BD=5,
S△CFE=( )2S△DAB
= × ×3×4
= .
∴S矩形EFCG=2S△CFE
= .
∵四邊形EFCG是矩形,
∴FC∥EG.
∴∠FCE=∠CEG.
∵∠GDC=∠CEG,∠FCE=∠FDE,
∴∠GDC=∠FDE.
∵∠FDE+∠CDB=90°,
∴∠GDC+∠CDB=90°.
∴∠GDB=90°
Ⅰ.當(dāng)點(diǎn)E在點(diǎn)A(E′)處時(shí),點(diǎn)F在點(diǎn)B(F′)處,點(diǎn)G在點(diǎn)D(G′)處,如圖2①所示.
此時(shí),CF=CB=4.
Ⅱ.當(dāng)點(diǎn)F在點(diǎn)D(F″)處時(shí),直徑F″G″⊥BD,
如圖2②所示,
此時(shí)⊙O與射線BD相切,CF=CD=3.
Ⅲ.當(dāng)CF⊥BD時(shí),CF最小,
如圖2③所示.
S△BCD= BCCD= BDCF
∴4×3=5×CF
∴CF= .
∴ ≤CF≤4.
∵S矩形EFCG= ,
∴ ×( )2≤S矩形EFCG≤ ×42.
∴ ≤S矩形EFCG≤12.
∴矩形EFCG的面積最大值為12,最小值為 .
②∵∠GDC=∠FDE=定值,點(diǎn)G的起點(diǎn)為D,終點(diǎn)為G″,如圖2②所示,
∴點(diǎn)G的移動(dòng)路線是線段DG″.
∵∠G″DC=∠BDA,∠DCG″=∠A=90°,
∴△DCG″∽△DAB.
∴ = .
∴ = .
∴DG″= .
∴點(diǎn)G移動(dòng)路線的長(zhǎng)為 .
【解析】(1)只要證到三個(gè)內(nèi)角等于90°即可.(2)易證點(diǎn)D在⊙O上,根據(jù)圓周角定理可得∠FCE=∠FDE,從而證到△CFE∽△DAB,根據(jù)相似三角形的性質(zhì)可得到S矩形EFCG=2S△CFE= .然后只需求出CF的范圍就可求出S矩形EFCG的范圍.根據(jù)圓周角定理和矩形的性質(zhì)可證到∠GDC=∠FDE=定值,從而得到點(diǎn)G的移動(dòng)的路線是線段,只需找到點(diǎn)G的起點(diǎn)與終點(diǎn),求出該線段的長(zhǎng)度即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,地面上兩個(gè)村莊C、D處于同一水平線上,一飛行器在空中以6千米/小時(shí)的速度沿MN方向水平飛行,航線MN與C、D在同一鉛直平面內(nèi).當(dāng)該飛行器飛行至村莊C的正上方A處時(shí),測(cè)得∠NAD=60°;該飛行器從A處飛行40分鐘至B處時(shí),測(cè)得∠ABD=75°.求村莊C、D間的距離( 取1.73,結(jié)果精確到0.1千米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道平行四邊形那有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論
(1)【發(fā)現(xiàn)與證明】
在ABCD中,AB≠BC,將△ABC沿AC翻折至△AB′C,連接B′D.
結(jié)論1:B′D∥AC;
結(jié)論2:△AB′C與ABCD重疊部分的圖形是等腰三角形.
…
請(qǐng)利用圖1證明結(jié)論1或結(jié)論2.
(2)【應(yīng)用與探究】
在ABCD中,∠B=30°,將△ABC沿AC翻折至△AB′C,連接B′D.
如圖1,若AB= ,∠AB′D=75°,則∠ACB= , BC=;
(3)如圖2,AB=2 ,BC=1,AB′與CD相交于點(diǎn)E,求△AEC的面積;
(4)已知AB=2 ,當(dāng)BC的長(zhǎng)為多少時(shí),△AB′D是直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校課外興趣小組在本校學(xué)生中開展“感動(dòng)中國(guó)2013年度人物”先進(jìn)事跡知曉情況專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為A、B、C、D四類.其中,A類表示“非常了解”,B類表示“比較了解”,C類表示“基本了解”,D類表示“不太了解”,劃分類別后的數(shù)據(jù)整理如下表:
類別 | A | B | C | D |
頻數(shù) | 30 | 40 | 24 | b |
頻率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= , b=;
(2)根據(jù)表中數(shù)據(jù),求扇形統(tǒng)計(jì)圖中類別為B的學(xué)生數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù);
(3)若該校有學(xué)生1000名,根據(jù)調(diào)查結(jié)果估計(jì)該校學(xué)生中類別為C的人數(shù)約為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題情境】張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣一個(gè)問題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點(diǎn)C作CF⊥AB,垂足為F.求證:PD+PE=CF.
(1).小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF. 小俊的證明思路是:如圖2,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.
(2).【變式探究】如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;
(3).【結(jié)論運(yùn)用】如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
(4).【遷移拓展】圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且ADCE=DEBC,AB=2 dm,AD=3dm,BD= dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在5次打靶測(cè)試中命中的環(huán)數(shù)如下: 甲:8,8,7,8,9
乙:5,9,7,10,9
(1)填寫下表:
平均數(shù) | 眾數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | 0.4 | |
乙 | 9 | 3.2 |
(2)教練根據(jù)這5次成績(jī),選擇甲參加射擊比賽,教練的理由是什么?
(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績(jī)的方差 . (填“變大”、“變小”或“不變”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某市初三年級(jí)學(xué)生體育成績(jī)(成績(jī)均為整數(shù)),隨機(jī)抽取了部分學(xué)生的體育成績(jī)并分段(A:20.5~22.5;B:22.5~24.5;C:24.5~26.5;D:26.5~28.5;E:28.5~30.5)統(tǒng)計(jì)如下體育成績(jī)統(tǒng)計(jì)表
分?jǐn)?shù)段 | 頻數(shù)/人 | 頻率 |
A | 12 | 0.05 |
B | 36 | a |
C | 84 | 0.35 |
D | b | 0.25 |
E | 48 | 0.20 |
根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計(jì)表中,a= , b= , 并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)小明說:“這組數(shù)據(jù)的眾數(shù)一定在C中.”你認(rèn)為小明的說法正確嗎?(填“正確”或“錯(cuò)誤”);
(3)若成績(jī)?cè)?7分以上(含27分)定為優(yōu)秀,則該市今年48000名初三年級(jí)學(xué)生中體育成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點(diǎn)A(2,0),B(0,4),∠AOB的平分線交AB于C,一動(dòng)點(diǎn)P從O點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度,沿y軸向點(diǎn)B作勻速運(yùn)動(dòng),過點(diǎn)P且平行于AB的直線交x軸于Q,作P、Q關(guān)于直線OC的對(duì)稱點(diǎn)M、N.設(shè)P運(yùn)動(dòng)的時(shí)間為t(0<t<2)秒.
(1)求C點(diǎn)的坐標(biāo),并直接寫出點(diǎn)M、N的坐標(biāo)(用含t的代數(shù)式表示);
(2)設(shè)△MNC與△OAB重疊部分的面積為S.
①試求S關(guān)于t的函數(shù)關(guān)系式;
②在圖2的直角坐標(biāo)系中,畫出S關(guān)于t的函數(shù)圖象,并回答:S是否有最大值?若有,寫出S的最大值;若沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為加強(qiáng)防汛工作,某市對(duì)一攔水壩進(jìn)行加固,如圖,加固前攔水壩的橫斷面是梯形ABCD.已知迎水坡面AB=12米,背水坡面CD=12 米,∠B=60°,加固后攔水壩的橫斷面為梯形ABED,tanE= ,則CE的長(zhǎng)為米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com