【題目】如圖,在中,,以AB為直徑作,連接,過點B于點D,連接ADOC于點E

1)求證:

2)若的半徑為4,求OE的長.

【答案】1)見解析;(2

【解析】

1)先利用圓周角定理得到∠ADB=90°,再根據(jù)平行線的性質得∠AEO=90°,根據(jù)等角的余角相等得到∠OAE=ACE,于是可判斷△ABD≌△CAE,從而得到BD=AE

2)由于OEAD,根據(jù)垂徑定理得到AE=DE,則AE=BD=2OE,然后在RtAOE中利用勾股定理可求出OE的長.

1)∵AB是圓O直徑

2)解:∵OEAD,
AE=DE,
OE為△ABD的中位線,
BD=2OE,
AE=2OE,
RtAOE中,∵OE2+AE2=AO2
OE2+4OE2=22,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形中,邊上任意點,平分,交于點

1)如圖1,當點恰好為中點,延長的延長線于點,求證:;

2)在(1)的條件下,求證:;

3)如圖2,延長的延長線于點,延長的延長線于點,連接,當時,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在銳角中,, ,將繞點按逆時針方向旋轉,得到.(1)如圖1,當點在線段的延長線上時,則的度數(shù)為______________度;(2)如圖2,點為線段中點,點是線段上的動點,在繞點按逆時針方向旋轉過程中,點的對應點是點,則線段長度最小值是_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(頂點是網(wǎng)格線的交點)和直線l及點O.

1)畫出關于直線l對稱的;

2)連接OA,將OA繞點O順時針旋轉,畫出旋轉后的線段;

3)在旋轉過程中,當OA有交點時,旋轉角的取值范圍為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解九年級學生2020年適應性考試數(shù)學成績,現(xiàn)從九年級學生中隨機抽取部分學生的適應性考試數(shù)學成績,按AB,CD四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如圖所示不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:

1)此次抽查的學生人數(shù)為   ;

2)把條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;

3)若該校九年級有學生1200人.請估計在這次適應性考試中達到B等級以上(含B等級)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】光明中學全體學生900人參加社會實踐活動,從中隨機抽取50人的社會實踐活動成績制成如圖所示的條形統(tǒng)計圖,結合圖中所給信息解答下列問題:

填寫下表:

中位數(shù)

眾數(shù)

隨機抽取的50人的社會實踐活動成績單位:分

估計光明中學全體學生社會實踐活動成績的總分.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠為了檢驗甲、乙兩車間生產(chǎn)的同一款新產(chǎn)品的合格情況(尺寸范圍為 的產(chǎn)品為合格),隨機各抽取了 個樣品進行檢測,過程如下: 收集數(shù)據(jù)(單位:):

甲車間:

乙車間:

整理數(shù)據(jù)(表 1):

分析數(shù)據(jù)(表 2):

應用數(shù)據(jù):

1)直接寫出表 2 中的 ;

2)估計甲車間生產(chǎn)的 個該款新產(chǎn)品中合格產(chǎn)品有多少個?

3)結合上述數(shù)據(jù)信息,請判斷哪個車間生產(chǎn)的新產(chǎn)品更好,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 如圖,在四邊形ABCD中,ABAD,ADBC,且ABBC4AD2,點E是邊BC上的一個動點,EFBCAD于點F,將四邊形ABCD沿EF所在直線折疊,若兩邊重疊部分的面積為3,則BE的長為( 。

A.B.C.D.4+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果店購進一批優(yōu)質晚熟芒果,進價為10/千克,售價不低于15/千克,且不超過40/千克,根據(jù)銷售情況發(fā)現(xiàn)該芒果在一天內的銷售量y(千克)與該天的售價x(/千克)之間滿足如表所示的一次函數(shù)關系:

(1)寫出銷售量y與售價x之間的函數(shù)關系式;

(2)設某天銷售這種芒果獲利W元,寫出W與售價x之間的函數(shù)關系式,并求出當售價為多少元時,當天的獲利最大,最大利潤是多少?

查看答案和解析>>

同步練習冊答案