【題目】已知,如圖,拋物線>0)軸交于點(diǎn)C,與軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0)OC=3OB.

(1)求拋物線的解析式;

(2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;

(3)若點(diǎn)E軸上,點(diǎn)P在拋物線上.是否存在以A,C,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)、;(2)、;(3)、P1(-2,-3),,

【解析】

試題分析:(1)、根據(jù)題意得出點(diǎn)B和點(diǎn)C的坐標(biāo),然后代入函數(shù)解析式求出答案;(2)、首先根據(jù)點(diǎn)A和點(diǎn)C的坐標(biāo)得出直線AC的解析式,然后過(guò)點(diǎn)D作DMy軸分別交線段AC和x軸于點(diǎn)M,N,設(shè)點(diǎn)M的坐標(biāo)為(m,-m-3),從而得出點(diǎn)D的坐標(biāo),求出DM的長(zhǎng)度,根據(jù)二次函數(shù)的性質(zhì)求出DM的最大值,得出面積的最大值;(3)、、過(guò)點(diǎn)C作CP1x軸交拋物線于點(diǎn)P1,過(guò)點(diǎn)P1作P1E1AC交x軸于點(diǎn)E1,將C(0,-3)代入函數(shù)解析式求出點(diǎn)P的坐標(biāo);、平移直線AC交x軸于點(diǎn)E,交x軸上方的拋物線于點(diǎn)P,當(dāng)AC=PE時(shí),四邊形ACEP為平行四邊形,設(shè)出點(diǎn)P的坐標(biāo)為(x,3),然后代入函數(shù)解析式求出點(diǎn)P的坐標(biāo).

試題解析:(1)、OC=3OB,B(1,0),C(0,-3). 把點(diǎn)B,C的坐標(biāo)代入,得

拋物線的解析式

(2)、由A(3,0),C(0,-3)得直線AC的解析式為

如圖,過(guò)點(diǎn)D作DMy軸分別交線段AC和x軸于點(diǎn)M,N.

設(shè)M則D

-1<0,當(dāng)x=時(shí),DM有最大值 S四邊形ABCD=SABC+SACD

此時(shí)四邊形ABCD面積有最大值為.

(3)、存在

過(guò)點(diǎn)C作CP1x軸交拋物線于點(diǎn)P1,過(guò)點(diǎn)P1作P1E1AC交x軸于點(diǎn)E1,

此時(shí)四邊形ACP1E1為平行四邊形. C(0,-3),令

,.P1(-2,-3)

平移直線AC交x軸于點(diǎn)E,交x軸上方的拋物線于點(diǎn)P,當(dāng)AC=PE時(shí),四邊形ACEP為平行四邊形,C(0,-3),

可令P(x,3),,得 解得,

此時(shí)存在點(diǎn) ,

綜上所述,存在3個(gè)點(diǎn)符合題意,坐標(biāo)分別是P1(-2,-3),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若一元二次方程ax2+bx+c=0有一根為0,則下列結(jié)論正確的是(
A.a=0
B.b=0
C.c=0
D.c≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)a=﹣2時(shí),代數(shù)式1﹣3a2的值是( 。

A. ﹣2 B. 11 C. ﹣11 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1),A、E、F、C在一條直線上,AE=CF,過(guò)E、F分別作DEAC,BFAC,若AB=CD,試證明BD平分EF,若將DEC的邊EC沿AC方向移動(dòng)變?yōu)閳D(2)時(shí),其余條件不變,上述結(jié)論是否成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系 xOy 中,函數(shù) y x2 的圖象經(jīng)過(guò)點(diǎn)M (x1 , y1 ) ,N (x2 , y2 ) 兩點(diǎn),若 4 x1 2, 0 x2 2 ,則 y1 ____ y2 . (用“=”“>”號(hào)連接)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作:如圖,ABC是等邊三角形,BDC是頂角BDC=120°的等腰三角形,以D為頂點(diǎn)作一個(gè)60°角:(1)角的兩邊分別交AB、AC邊于M、N兩點(diǎn),連接MN.探究:線段BM、MN、NC之間的關(guān)系,并加以證明.

(2)若角的兩邊分別交AB、CA的延長(zhǎng)線于M、N兩點(diǎn),連接MN。在圖中畫(huà)出圖形,再直接寫(xiě)出線段BM、MN、NC之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:(n+m)(mn)﹣(4m3n2mn3)÷2mn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若關(guān)于x的一元二次方程x2+2x﹣k=0沒(méi)有實(shí)數(shù)根,則k的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用四舍五入法對(duì)0.02015(精確到千分位)取近似數(shù)是(  )
A.0.02
B.0.020
C.0.0201
D.0.0202

查看答案和解析>>

同步練習(xí)冊(cè)答案