【題目】已知拋物線ykx2+12kx+13kx軸有兩個(gè)不同的交點(diǎn)A、B

1)求k的取值范圍;

2)證明該拋物線一定經(jīng)過(guò)非坐標(biāo)軸上的一點(diǎn)M,并求出點(diǎn)M的坐標(biāo);

3)當(dāng)k≤8時(shí),由(2)求出的點(diǎn)M和點(diǎn)A,B構(gòu)成的△ABM的面積是否有最值?若有,求出該最值及相對(duì)應(yīng)的k值.

【答案】1;(2)見(jiàn)解析,M(3,4) ;(3)△ABM的面積有最大值,

【解析】

1)根據(jù)題意得出△=1-2k2-4×k×1-3k=1-4k20,得出1-4k≠0,解不等式即可;
2y= kx2-2x-3+x+1,故只要x2-2x-3=0,那么y的值便與k無(wú)關(guān),解得x=3x=-1(舍去,此時(shí)y=0,在坐標(biāo)軸上),故定點(diǎn)為(3,4);
3)由|AB|=|xA-xB|得出|AB|=||,由已知條件得出,得出0||≤,因此|AB|最大時(shí),||=,解方程即可得到結(jié)果.

解:(1)當(dāng)時(shí),函數(shù)為一次函數(shù),不符合題意,舍去;

當(dāng)時(shí),拋物線軸相交于不同的兩點(diǎn),

,

,

k的取值范圍為;

2)證明:拋物線

,

拋物線過(guò)定點(diǎn)說(shuō)明在這一點(diǎn)k無(wú)關(guān),

顯然當(dāng)時(shí),k無(wú)關(guān),

解得:,

當(dāng)時(shí),,定點(diǎn)坐標(biāo)為;

當(dāng)時(shí),,定點(diǎn)坐標(biāo)為

M不在坐標(biāo)軸上,

3,

,

,

,

,

,

最大時(shí),

解得:,或(舍去),

當(dāng)時(shí),有最大值,

此時(shí)的面積最大,沒(méi)有最小值,

則面積最大為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛貨車(chē)早晨700出發(fā),從甲地駛往乙地送貨.如圖是貨車(chē)行駛路程ykm)與行駛時(shí)間xh)的完整的函數(shù)圖像(其中點(diǎn)BC、D在同一條直線上),小明研究圖像得到了以下結(jié)論:

①甲乙兩地之間的路程是100 km;

②前半個(gè)小時(shí),貨車(chē)的平均速度是40 km/h;

800時(shí),貨車(chē)已行駛的路程是60 km;

④最后40 km貨車(chē)行駛的平均速度是100 km/h

⑤貨車(chē)到達(dá)乙地的時(shí)間是824,

其中,正確的結(jié)論是(

A.①②③④B.①③⑤C.①③④D.①③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,∠MON=40°,OE平分∠MON,A,B,C分別是射線OM,OE,ON上的動(dòng)點(diǎn)(A,BC不與點(diǎn)O 重合),連接AC交射線OE于點(diǎn)D.設(shè)∠OACx°.

(1)如圖①,若ABON,則

①∠ABO的度數(shù)是________.

②當(dāng)∠BAD=∠ABD時(shí),x=________;當(dāng)∠BAD=∠BDA時(shí),x=________.

(2)如圖②,若ABOM,則是否存在這樣的x值,使得△ADB中有兩個(gè)相等的角?若存在,求出x的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)軸正半軸上一動(dòng)點(diǎn),連接,將沿翻折得,點(diǎn)分別為的中點(diǎn),連接并延長(zhǎng)交所在直線于點(diǎn),連接.當(dāng)為直角三角形時(shí),點(diǎn)坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=90°,且OAOB分別與反比例函數(shù)、的圖象交于AB兩點(diǎn),則tanOAB的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A是函數(shù)yx0)上一動(dòng)點(diǎn),連接OA,線段OBOA關(guān)于y軸對(duì)稱(chēng),將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得線段OC,將線段OA繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得線段DA

1)在圖1中畫(huà)出線段OB、OC,保留作圖痕跡;

2)連接ABBC、AC,當(dāng)△AOB的面積等于△BOC的面積時(shí),求△ABC的面積;

3)如圖3,若點(diǎn)D的坐標(biāo)為(mn),直接寫(xiě)出mn的等量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明想要測(cè)量水面人工島上兩棵小樹(shù)CD的距離,如圖,已知河岸MNCD,小明在河岸MN上點(diǎn)A處測(cè)量小樹(shù)C位于北偏東60°方向,然后沿河岸走了20米,到達(dá)點(diǎn)B處,此時(shí)測(cè)得河對(duì)岸小樹(shù)C位于北偏東30°方向,小樹(shù)D位于東北方向,則兩棵樹(shù)CD的距離為_____米.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】創(chuàng)全國(guó)文明城市活動(dòng)中,某社區(qū)為了了解居民掌握垃圾分類(lèi)知識(shí)的情況進(jìn)行調(diào)查.其中A、B兩小區(qū)分別有500名居民,社區(qū)從中各隨機(jī)抽取50名居民進(jìn)行相關(guān)知識(shí)測(cè)試,并將成績(jī)進(jìn)行整理得到部分信息:

(信息一)A小區(qū)50名居民成績(jī)的頻數(shù)直方圖如圖(每一組含前一個(gè)邊界值,不含后一個(gè)邊界值);

(信息二)圖中,從左往右第四組的成績(jī)?nèi)缦?/span>

75

75

79

79

79

79

80

80

81

82

82

83

83

84

84

84

(信息三)A、B兩小區(qū)各50名居民成績(jī)的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺):

小區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

優(yōu)秀率

方差

A

75.1

79

40%

277

B

75.1

77

76

45%

211

根據(jù)以上信息,回答下列問(wèn)題:

1)求A小區(qū)50名居民成績(jī)的中位數(shù).

2)請(qǐng)估計(jì)A小區(qū)500名居民中能超過(guò)平均數(shù)的有多少人?

3)請(qǐng)盡量從多個(gè)角度比較、分析AB兩小區(qū)居民掌握垃圾分類(lèi)知識(shí)的情況.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察下列兩個(gè)等式:22×+1,55×+1,給出定義如下

我們稱(chēng)使等式abab+1成立的一對(duì)有理數(shù)“a,b”為共生有理數(shù)對(duì)”,記為(a,b

1)通過(guò)計(jì)算判斷數(shù)對(duì)“﹣2,1”,“4,”是不是“共生有理數(shù)對(duì)”;

2)若(6,a)是“共生有理數(shù)對(duì)”,求a的值;

3)若(mn)是“共生有理數(shù)對(duì)”,則“﹣n,﹣m   “共生有理數(shù)對(duì)”(填“是”或“不是”),并說(shuō)明理由;

4)若(mn)是共生有理數(shù)對(duì)(其中n1),直接用含n的代數(shù)式表示m.

查看答案和解析>>

同步練習(xí)冊(cè)答案