【題目】如圖,的頂點(diǎn)A在雙曲線上,頂點(diǎn)B在雙曲線上,AB中點(diǎn)P恰好落在y軸上,則的面積為_____

【答案】7

【解析】

過(guò)AAEy軸于E,過(guò)BBDy軸于D,得到∠AED=BDP=90°,根據(jù)全等三角形的性質(zhì)得到SBDP=SAED,根據(jù)反比例函數(shù)系數(shù)k的幾何意義得到SOBD=3,SAOE=4,于是得到結(jié)論.

解:過(guò)AAEy軸于E,過(guò)BBDy軸于D

∴∠AED=BDP=90°,
∵點(diǎn)PAB的中點(diǎn),
BP=AP,
∵∠BPD=APE,
∴△BPD≌△APEAAS),
SBDP=SAED

∵頂點(diǎn)A在雙曲線,頂點(diǎn)B在雙曲線上,

SOBD=3,SAOE=4
∴△OAB的面積=SOBD+SAOE=7,
故答案為:7

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線軸的兩個(gè)交點(diǎn)是點(diǎn),的左側(cè)),與軸的交點(diǎn)是點(diǎn)

1)求證:兩點(diǎn)中必有一個(gè)點(diǎn)坐標(biāo)是;

2)若拋物線的對(duì)稱軸是,求其解析式;

3)在(2)的條件下,拋物線上是否存在一點(diǎn),使?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,個(gè)全等的等腰三角形的底邊在同一條直線上,底角頂點(diǎn)依次重合.連接第一個(gè)三角形的底角頂點(diǎn)和第個(gè)三角形的頂角頂點(diǎn)于點(diǎn),則_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是拋物線對(duì)稱軸上的一點(diǎn),連接OA,以A為旋轉(zhuǎn)中心將AO逆時(shí)針旋轉(zhuǎn)90°得到AO′,當(dāng)O′恰好落在拋物線上時(shí),點(diǎn)A的坐標(biāo)為______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系點(diǎn),將點(diǎn)A向右平移6個(gè)單位長(zhǎng)度,得到點(diǎn)B.

(1)直接寫(xiě)出點(diǎn)B的坐標(biāo);

(2)若拋物線y=-x2+bx+c經(jīng)過(guò)點(diǎn)A,B,求拋物線的表達(dá)式;

(3)若拋物線y=-x2+bx+c的頂點(diǎn)在直線y=x+2上移動(dòng),當(dāng)拋物線與線段AB有且只有一個(gè)公共點(diǎn)時(shí),求拋物線頂點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】箱子里有4瓶牛奶,其中有一瓶是過(guò)期的.現(xiàn)從這4瓶牛奶中任意抽取牛奶飲用,抽取任意一瓶都是等可能的.

1)若小芳任意抽取1瓶,抽到過(guò)期的一瓶的概率是 ;

2)若小芳任意抽取2瓶,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求,抽出的2瓶牛奶中恰好抽到過(guò)期牛奶的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),其對(duì)稱軸,為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).

1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);

2)當(dāng)點(diǎn)在運(yùn)動(dòng)過(guò)程中,求四邊形面積最大時(shí)的值及此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BDABC外接圓⊙O的直徑,且∠BAE=C.

(1)求證:AE與⊙O相切于點(diǎn)A;

(2)若AEBC,BC=2,AC=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB為直徑,點(diǎn)M為AB延長(zhǎng)線上的一點(diǎn),MC與⊙O相切于點(diǎn)C,圓周上有另一點(diǎn)D與點(diǎn)C分居直徑AB兩側(cè),且使得MC=MD=AC,連接AD.現(xiàn)有下列結(jié)論:①M(fèi)D與⊙O相切;②四邊形ACMD是菱形;③AB=MO;④∠ADM=120°,其中正確的結(jié)論有(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案