(2005•無錫)如圖,已知矩形ABCD的邊長AB=2,BC=3,點P是AD邊上的一動點(P異于A、D),Q是BC邊上的任意一點.連AQ、DQ,過P作PE∥DQ交AQ于E,作PF∥AQ交DQ于F.
(1)求證:△APE∽△ADQ;
(2)設(shè)AP的長為x,試求△PEF的面積S△PEF關(guān)于x的函數(shù)關(guān)系式,并求當P在何處時,S△PEF取得最大值,最大值為多少?
(3)當Q在何處時,△ADQ的周長最小?(須給出確定Q在何處的過程或方法,不必給出證明)

【答案】分析:(1)根據(jù)PE∥QD得出的同位角相等即可證得兩三角形相似.
(2)由于PE∥DQ,PF∥AQ,因此四邊形PEQF是平行四邊形,根據(jù)平行四邊形的性質(zhì)可知:S△PEF=S平行四邊形PEQF,可先求出△AQD的面積,然后根據(jù)△AEP與△ADQ相似,用相似比的平方即面積比求出△APE的面積,同理可求出△DPF的面積,進而可求出平行四邊形PEQF的面積表達式,也就能得出關(guān)于S,x的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可得出S的最大值即對于的x的值.
(3)△ADQ中,AD長為定值,因此要使△ADQ的周長最小,AQ+QD需最小,可根據(jù)軸對稱圖形的性質(zhì)和兩點間線段最短為依據(jù)來確定Q點的位置.
解答:(1)證明:∵PE∥DQ
∴△APE∽△ADQ;

(2)解:同(1)可證△APE∽△ADQ與△PDF∽△ADQ,及S△PEF=S平行四邊形PEQF,
根據(jù)相似三角形的面積之比等于相似比得平方,
==,
∵S△AQD=AD×AB=×3×2=3,
得S△PEF=S平行四邊形PEQF
=(S△AQD-S△AEP-S△DFP
=×[3-×3-×3]
=(-x2+2x)
=-x2+x
=-(x-2+
∴當x=,即P是AD的中點時,S△PEF取得最大值

(3)解:作A關(guān)于直線BC的對稱點A′,連DA′交BC于Q,則這個點Q就是使△ADQ周長最小的點,此時Q是BC的中點.

點評:本題主要考查了相似三角形的判定和性質(zhì)、圖形面積的求法、二次函數(shù)的應(yīng)用等知識.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•無錫)如圖,一次函數(shù)y=kx+n的圖象與x軸和y軸分別交于點A(6,0)和B(0,),線段AB的垂直平分線交x軸于點C,交AB于點D.
(1)試確定這個一次函數(shù)關(guān)系式;
(2)求過A、B、C三點的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省無錫市中考數(shù)學試卷(解析版) 題型:解答題

(2005•無錫)如圖,一次函數(shù)y=kx+n的圖象與x軸和y軸分別交于點A(6,0)和B(0,),線段AB的垂直平分線交x軸于點C,交AB于點D.
(1)試確定這個一次函數(shù)關(guān)系式;
(2)求過A、B、C三點的拋物線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(08)(解析版) 題型:填空題

(2005•無錫)如圖,AB是⊙O的直徑,若AB=4cm,∠D=30°,則∠B=    度,AC=    cm.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圖形認識初步》(01)(解析版) 題型:選擇題

(2005•無錫)如圖是一個正四面體,它的四個面都是正三角形,現(xiàn)沿它的三條棱AC、BC、CD剪開展成平面圖形,則所得的展開圖是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年江蘇省無錫市中考數(shù)學試卷(解析版) 題型:選擇題

(2005•無錫)如圖是一個正四面體,它的四個面都是正三角形,現(xiàn)沿它的三條棱AC、BC、CD剪開展成平面圖形,則所得的展開圖是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案