【題目】如圖,在ABCD中,對角線AC,BD相交于點(diǎn)O,過點(diǎn)O作BD的垂線與邊AD,BC分別交于點(diǎn)E,F,連接BE交AC于點(diǎn)K,連接DF.
(1)求證:四邊形EBFD是菱形;
(2)若BK=3EK,AE=4,求四邊形EBFD的周長.
【答案】(1)見解析;(2)32
【解析】
(1)四邊形ABCD是平行四邊形,可以證明△DEO≌△BFO,可得OE=OF,從而四邊形EBFD是平行四邊形,根據(jù)EF⊥BD,進(jìn)而可得平行四邊形EBFD是菱形;
(2)證明△AEK∽△CBK,對應(yīng)邊成比例可得BC=12,進(jìn)而求出DE的長,可得菱形的周長.
解:(1)證明:∵四邊形ABCD是平行四邊形,
∴AD//BC,
∴∠EDO=∠FBO,
OB=OD,
∠EOF=∠FOB,
∴△DEO≌△BFO(ASA),
∴OE=OF,
∴四邊形EBFD是平行四邊形,
∵EF⊥BD,
∴平行四邊形EBFD是菱形;
(2)∵AE//BC,
∴△AEK∽△CBK,
∴=,
∵BK=3EK,AE=4,
∴=,
∴BC=12,
∴AD=BC=DE+AE=DE+4=12,
∴DE=8,
∴菱形EBFD的周長為4DE=32.
答:四邊形EBFD的周長為32.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)到直線的距離即為點(diǎn)到直線的垂線段的長.
(1)如圖1,取點(diǎn)M(1,0),則點(diǎn)M到直線l:y=x﹣1的距離為多少?
(2)如圖2,點(diǎn)P是反比例函數(shù)y=在第一象限上的一個點(diǎn),過點(diǎn)P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點(diǎn)P,使d0=?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點(diǎn)A、B(A在B的左邊).且∠AOB=90°,求點(diǎn)P(2,0)到直線y=kx+m的距離最大時,直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,C為線段BE上的一點(diǎn),分別以BC和CE為邊在BE的同側(cè)作正方形ABCD和正方形CEFG,M、N分別是線段AF和GD的中點(diǎn),連接MN
(1)線段MN和GD的數(shù)量關(guān)系是_____,位置關(guān)系是_____;
(2)將圖①中的正方形CEFG繞點(diǎn)C逆時針旋轉(zhuǎn)90°,其他條件不變,如圖②,(1)的結(jié)論是否成立?說明理由;
(3)已知BC=7,CE=3,將圖①中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn)一周,其他條件不變,直接寫出MN的最大值和最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解八年級學(xué)生參加社會實踐活動情況,隨機(jī)調(diào)查了本校部分八年級學(xué)生在第一學(xué)期參加社會實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,回答下列問題:
(1)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的的值為 ;
(2)求本次抽樣調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)、中位數(shù)和平均數(shù);
(3)若該校八年級學(xué)生有人,估計參加社會實踐活動時間大于天的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次綜合社會實踐活動中,小東同學(xué)從A處出發(fā),要到A地北偏東60°方向的C處,他先沿正東方向走了4千米到達(dá)B處,再沿北偏東15°方向走,恰能到達(dá)目的地C,如圖所示,則A、C兩地相距__千米.(結(jié)果精確到0.1千米,參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A,B,C的坐標(biāo)分別是(0,4),(4,0),(8,0),⊙M是△ABC的外接圓,則點(diǎn)M的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線L:y=kx+2k(k>0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與函數(shù)(x>0)的圖象的交點(diǎn)P位于第一象限.
(1)若點(diǎn)P的坐標(biāo)為(1,6),
①求m的值及點(diǎn)A的坐標(biāo);
②=_________;
(2)直線h:y=2kx-2與y軸交于點(diǎn)C,與直線L1交于點(diǎn)Q,若點(diǎn)P的橫坐標(biāo)為1,
①寫出點(diǎn)P的坐標(biāo)(用含k的式子表示);
②當(dāng)PQ≤PA時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一種指甲剪.該指甲剪利用杠桿原理操作,使用者只需施力按壓柄的末端,便可輕易透過鋒利的前端刀片剪斷指甲,它被按壓后示意圖如圖2所示,上下臂杠桿軸承,未使用指甲剪時,點(diǎn)在上,且比長,則的長為________;使用指甲剪時,下壓點(diǎn),當(dāng)時,兩刀片咬合,繞點(diǎn)按逆時針方向旋轉(zhuǎn)到的位置,則與的交點(diǎn)從開始到結(jié)束時移動的距離為_______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,∠CAB=30°,點(diǎn)D在AB上,連接CD,并將CD繞點(diǎn)D逆時針旋轉(zhuǎn)60°得到DE,連接AE.
(1)如圖1,當(dāng)點(diǎn)D為AB中點(diǎn)時,直接寫出DE與AE長度之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點(diǎn)D在線段AB上時,
① 根據(jù)題意補(bǔ)全圖2;
② 猜想DE與AE長度之間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com