在一個(gè)不透明的盒子中放有兩個(gè)紅球和一個(gè)白球,這三個(gè)球除了顏色之外,其他都一樣.閉著眼睛從盒子中抽取一個(gè)球,不放回,再抽取第二個(gè)球.
(1)求抽出的兩球顏色相同的概率;
(2)甲乙兩人打算做個(gè)游戲,規(guī)則如下:如果抽出的兩球顏色相同則甲贏(yíng),如果顏色不同則乙贏(yíng).請(qǐng)說(shuō)明游戲是否公平.

解:(1)畫(huà)樹(shù)狀圖得:

∵共有6種等可能的結(jié)果,抽出的兩球顏色相同的有2情況,
∴P(兩球顏色相同)==
答:兩球顏色相同的概率為

(2)∵P(乙贏(yíng))=P(兩球顏色不同)==,P(甲贏(yíng))=P(兩球顏色相同)=,
∴P(甲贏(yíng))=P(兩球顏色相同)<P(乙贏(yíng)),
∴這個(gè)游戲規(guī)則不公平.
分析:(1)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與抽出的兩球顏色相同的情況,再利用概率公式求解即可求得答案;
(2)首先由(1)即可求得甲乙兩人取勝的概率,比較大小,即可求得游戲是否公平.
點(diǎn)評(píng):本題考查的是游戲公平性的判斷.判斷游戲公平性就要計(jì)算每個(gè)事件的概率,概率相等就公平,否則就不公平.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊)在一個(gè)不透明的盒子中裝有8個(gè)白球,若干個(gè)黃球,它們除顏色不同外,其余均相同,若從中隨機(jī)摸出一個(gè)球?yàn)榘浊虻母怕适?span id="7ll5r9j" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
2
3
,則黃球的個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)不透明的盒子中,共有“一白三黑”四枚圍棋子,它們除顏色外無(wú)其他區(qū)別.
(1)隨機(jī)地從盒子中取出1枚,則取出的是白子的概率是多少?
(2)隨機(jī)地從盒子中取出1枚,不放回再取出第二枚,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方式表示出所有等可能的結(jié)果,并求出恰好取到“兩枚棋子顏色不相同”的概率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•西城區(qū)一模)在一個(gè)不透明的盒子中裝有3個(gè)紅球、2個(gè)黃球和1個(gè)綠球,這些球除顏色外,沒(méi)有任何其他區(qū)別,現(xiàn)從這個(gè)盒子中隨機(jī)摸出一個(gè)球,摸到黃球的概率為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•長(zhǎng)沙)在一個(gè)不透明的盒子中裝有n個(gè)小球,它們只有顏色上的區(qū)別,其中有2個(gè)紅球,每次摸球前先將盒中的球搖勻,隨機(jī)摸出一個(gè)球記下顏色后再放回盒中,通過(guò)大量重復(fù)試驗(yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定于0.2,那么可以推算出n大約是
10
10

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在一個(gè)不透明的盒子中裝有相同形狀和大小的2個(gè)黃球、1個(gè)黑球和若干紅球,且已知從盒中隨機(jī)摸出一個(gè)球?yàn)辄S球的概率為
13

(1)則盒中有
3
3
個(gè)紅球;
(2)一枚棋子放在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正五邊形ABCDE的頂點(diǎn)A處,將棋子沿邊按順時(shí)針?lè)较蜃邉?dòng),通過(guò)摸球來(lái)確定棋子的走法.其規(guī)則是:摸到紅球,則棋子走1個(gè)單位長(zhǎng)度,摸到黃球,則棋子走2個(gè)單位長(zhǎng)度,摸到黑球,則棋子走3個(gè)單位長(zhǎng)度,先摸出一個(gè)球,再?gòu)氖O碌那蛑忻鲆粋(gè)球,根據(jù)摸出的兩個(gè)球的顏色兩次連續(xù)走動(dòng)棋子.兩次連續(xù)走動(dòng)之后,棋子走到哪一點(diǎn)的可能性最大?并求出棋子走到該點(diǎn)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案