分析 (1)先根據(jù)題意得出P點坐標(biāo),把點P(3,4)代入反比例函數(shù)y=$\frac{k}{x}$即可得出k的值,再將A、P兩點的坐標(biāo)代入y=ax+b求出kb的值,故可得出一次函數(shù)的解析式,進(jìn)而得出結(jié)論;
(2)先求得y=2時,x=6,再根據(jù)菱形的判定即可求解.
解答 解:(1)∵AC=BC,CO⊥AB,A(-3,0),
∴O為AB的中點,即OA=OB=3,
∴P(3,4),B(3,0),
將P(3,4)代入反比例解析式得:k=12,即反比例解析式為y=$\frac{12}{x}$.
將A(-3,0)與P(3,4)代入y=ax+b得:$\left\{\begin{array}{l}{-3a+b=0}\\{3a+b=4}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{a=\frac{2}{3}}\\{b=2}\end{array}\right.$,
∴一次函數(shù)解析式為y=$\frac{2}{3}$x+2;
(2)如圖所示,
把y=2代入y=$\frac{12}{x}$中,得x=6,得D(6,2),
PB垂直且平分CD,
則四邊形BCPD為菱形.
則點D(6,2).
點評 本題考查的是反比例函數(shù)綜合題,涉及到一次函數(shù)與反比例函數(shù)圖象上點的坐標(biāo)特點、菱形的判定與性質(zhì)等知識,難度適中.
科目:初中數(shù)學(xué) 來源:2017屆江蘇省宜興市宜城環(huán)科園教學(xué)聯(lián)盟九年級下學(xué)期第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:判斷題
如圖,在矩形ABCD中,AB=3,BC=4.動點P從點A出發(fā)沿AC向終點C運動,同時動點Q從點B出發(fā)沿BA向點A運動,到達(dá)A點后立刻以原來的速度沿AB返回.點P,Q運動速度均為每秒1個單位長度,當(dāng)點P到達(dá)點C時停止運動,點Q也同時停止.連結(jié)PQ,設(shè)運動時間為t(t >0)秒.
(1)在點Q從B到A的運動過程中,
①當(dāng)t= 時,PQ⊥AC;
②求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;
(2)伴隨著P、Q兩點的運動,線段PQ的垂直平分線為l.
①當(dāng)l經(jīng)過點A時,射線QP交AD于點E,求AE的長;
②當(dāng)l經(jīng)過點B時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 6.7m | B. | 7.2m | C. | 8.1m | D. | 9.0m |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -2x2y•3xy2=-6x2y2 | B. | (-x-2y)(x+2y)=x2-4y2 | ||
C. | 6x3y2÷2x2y=3xy | D. | (4x3y2)2=16x9y4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x$≤\frac{1}{2}$且x≠1 | B. | x$≥\frac{1}{2}$且x≠1 | C. | x$>\frac{1}{2}$且x≠1 | D. | x$<\frac{1}{2}$且x≠1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2017屆江蘇省宜興市宜城環(huán)科園教學(xué)聯(lián)盟九年級下學(xué)期第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:判斷題
初三年級教師對試卷講評課中學(xué)生參與的深度與廣度進(jìn)行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:
(1)在這次評價中,一共抽查了 名學(xué)生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為 度;
(3)請將頻數(shù)分布直方圖補充完整;
(4)如果全市有6000名初三學(xué)生,那么在試卷評講課中,“獨立思考”的初三學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2017屆江蘇省宜興市宜城環(huán)科園教學(xué)聯(lián)盟九年級下學(xué)期第一次質(zhì)量檢測數(shù)學(xué)試卷(解析版) 題型:單選題
矩形具有而平行四邊形不一定具有的性質(zhì)是( )
A. 對角線互相垂直 B. 對角線相等 C. 對角線互相平分 D. 對角相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2016-2017學(xué)年山東省淄博市(五四學(xué)制)六年級下學(xué)期第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題
5:00 時針與分針成_________度, 8:25 時分針與時針成___________度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com