如圖,已知AB=AC,∠1=∠2,∠B=∠C,則BD=CE.請說明理由:
解:∵∠1=∠2
∴∠1+∠BAC=∠2+
∠BAC
∠BAC

即∠EAC=∠DAB.
在△ABD和△ACE中,
∠B=
∠C
∠C
(已知)
∵AB=
AC
AC
(已知)
∠EAC=
∠DAB
∠DAB
(已證)
∴△ABD≌△ACE(
ASA
ASA

∴BD=CE(
全等三角形的對應(yīng)邊相等
全等三角形的對應(yīng)邊相等
分析:根據(jù)∠1=∠2,可得∠1+∠BAC=∠2+∠BAC,∠EAC=∠DAB,然后根據(jù)已知條件∠B=∠C,BD=CE,利用ASA證明△ABD≌△ACE,然后根據(jù)全等三角形的對應(yīng)邊相等可證明BD=CE.
解答:解:∵∠1=∠2,
∴∠1+∠BAC=∠2+∠BAC,
即∠EAC=∠DAB,
在△ABD和△ACE中,
∠B=∠C(已知),
∵AB=AC(已知),
∠EAC=∠DAB(已證),
∴△ABD≌△ACE( ASA),
∴BD=CE(全等三角形的對應(yīng)邊相等).
故答案為:∠BAC,∠C,AC,∠DAB,ASA,全等三角形的對應(yīng)邊相等.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應(yīng)相等時,角必須是兩邊的夾角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB⊥AC,AD⊥AE,AB=AC,AD=AE,則∠BFD的度數(shù)是( 。
A、60°B、90°C、45°D、120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知AB=AC,D是BC的中點,E是AD上的一點,圖中全等三角形有幾對( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、如圖,已知AB=AC,AD=AE.求證BD=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,已知AB=AC,AD=AE,BD=EC,則圖中有
2
對全等三角形,它們是
△ABD≌△AEC
△ABE≌△ADC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB=AC,BC=CD=AD,求∠B的值.

查看答案和解析>>

同步練習(xí)冊答案