【題目】定義:若拋物線 m≠0)與拋物線 a≠0)的開口大小相同,方向相反,且拋物線經(jīng)過的頂點,我們稱拋物線的“友好拋物線”.

(1)若的表達式為,求的“友好拋物線”的表達式;

(2)平面上有點P (1,0),Q (3,0),拋物線 的“友好拋物線”,且拋物線的頂點在第一象限,縱坐標為2,當拋物線與線段PQ沒有公共點時,求a的取值范圍.

【答案】(1) 的“友好拋物線”為: 2.

【解析】(1)依題意,可設的“友好拋物線”的解析式為: ,

的頂點為(1,-1),

過點(1,-1),∴,即b=0,

的“友好拋物線”為: ;

(2)依題意,得 m =-a,

的頂點為,

,即,

經(jīng)過點P(1,0)時,

,a=8,

經(jīng)過點Q(3,0)時,

,

∴拋物線與線段PQ沒有公共點時, .

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】王老師對試卷講評課中九年級學生參與的深度與廣度進行評價調(diào)查,每位學生最終評價結(jié)果為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項中的一項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了名學生;

(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在扇形的圓心角度數(shù)為度;

(3)請將頻數(shù)分布直方圖補充完整;

(4)如果全市九年級學生有8000名,那么在試卷評講課中,“獨立思考”的九年級學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為進一步建設秀美、宜居的生態(tài)環(huán)境,某村欲購買甲、乙、丙三種樹美化村莊,已知甲、乙丙三種樹的價格之比為2:2:3,甲種樹每棵200元,現(xiàn)計劃用210000元資金,購買這三種樹共1000棵.

(1)求乙、丙兩種樹每棵各多少元?

(2)若購買甲種樹的棵樹是乙種樹的2倍,恰好用完計劃資金,求這三種樹各能購買多少棵?

(3)若又增加了10120元的購樹款,在購買總棵樹不變的前提下,求丙種樹最多可以購買多少棵?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果將(a+bnn為非負整數(shù))的每一項按字母a的次數(shù)由大到小排列,可以得到下面的等式(1),然后將每個式子的各項系數(shù)排列成(2):(a+b1a+b;(a+b2a2+2ab+b2;(a+b3a3+3a2b+3ab2+b3;(a+b4a4+4a3b+6a2b2+4ab3+b4;根據(jù)規(guī)律可得:(a+b5_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電器超市銷售每臺進價分別為200元、170元的AB兩種型號的電風扇,下表是近兩周的銷售情況:

(進價、售價均保持不變,利潤 = 銷售收入-進貨成本)

1)求A、B兩種型號的電風扇的銷售單價;

2)若超市準備用不多于5400元的金額再采購這兩種型號的電風扇共30臺,求A種型號的電風扇最多能采購多少臺?

3)在(2)的條件下,超市銷售完這30臺電風扇能否實現(xiàn)利潤為1400元的目標?若能,請給出相應的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】大成蔬菜公司以千克的成本價購進番茄,公司想知道番茄的損壞率,從所有隨機抽取若干進行統(tǒng)計,部分結(jié)果如表:

番茄總質(zhì)量

損壞番茄質(zhì)量

番茄損壞的頻率

估計這批番茄損壞的概率為______(精確到),據(jù)此,若公司希望這批番茄能獲得利潤元,則銷售時(去掉損壞的番茄)售價應至少定為______/千克.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】201631,某園林公司派出一批工人去完成種植2200棵景觀樹木的任務這批工人31日到5日種植的數(shù)量(單位棵)如圖所示

1)這批工人前兩天平均每天種植多少棵景觀樹木?

2)因業(yè)務需要,310日必須完成種植任務,你認為該園林公司是否需要增派工人?請運用統(tǒng)計知識說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】填空:如圖,已知DGBC,BCAC,EFAB,∠1=∠2,試判斷CDAB的位置關系:

解:CDAB

DGBC,BCAC(已知)

∴∠DGB=∠_____=90°(垂直定義)

DGAC,(____________________)

∴∠2=∠_________.(兩直線平行,內(nèi)錯角相等)

∵∠1=∠2(已知)

∴∠1=∠________(等量代換)

EF∥______(同位角相等,兩直線平行)

∴∠AEF=∠ADC,(________________)

EFAB,

∴∠AEF90°

∴∠ADC90°

即:CDAB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A的坐標為(3,2),點B的坐標為(3,0).作如下操作:

1以點A為旋轉(zhuǎn)中心,將ABO順時針方向旋轉(zhuǎn)90°,得到AB1O1

2以點O為位似中心,將ABO放大,得到A2B2O,使位似比為12,且點A2在第三象限.

①在圖中畫出AB1O1A2B2O

②請直接寫出點A2的坐標:  

③如果ABO內(nèi)部一點M的坐標為(m,n),寫出點MA2B2O內(nèi)的對應點N的坐標:  

查看答案和解析>>

同步練習冊答案