已知二次函數(shù)(m是常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖像與x軸沒有公共點(diǎn);
(2)把該函數(shù)的圖像沿x軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖像與x軸只有一個(gè)公共點(diǎn)?
(1)證明見解析;(2)3.

試題分析:(1)求出根的判別式,即可得出答案.
(2)先化成頂點(diǎn)式,根據(jù)頂點(diǎn)坐標(biāo)和平移的性質(zhì)得出即可.
試題解析:(1)∵
∴方程沒有實(shí)數(shù)解.
∴不論m為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn).
(2)∵,
∴把函數(shù)的圖象延y軸向下平移3個(gè)單位長(zhǎng)度后,得到函數(shù)的圖象,它的頂點(diǎn)坐標(biāo)是(m,0).
∴這個(gè)函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn).
∴把函數(shù)的圖象延y軸向下平移3個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,其中點(diǎn)B的坐標(biāo)為.
(1)求拋物線對(duì)應(yīng)的函數(shù)表達(dá)式;]
(2)將(1)中的拋物線沿對(duì)稱軸向上平移,使其頂點(diǎn)M落在線段BC上,記該拋物線為G,求拋物線G所對(duì)應(yīng)的函數(shù)表達(dá)式;
(3)將線段BC平移得到線段(B的對(duì)應(yīng)點(diǎn)為,C的對(duì)應(yīng)點(diǎn)為),使其經(jīng)過(2)中所得拋物線G的頂點(diǎn)M,且與拋物線G另有一個(gè)交點(diǎn)N,求點(diǎn)到直線的距離的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知拋物線 (b,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,–1),C的坐標(biāo)為(4,3),直角頂點(diǎn)B在第四象限.
(1)如圖,若該拋物線過A,B兩點(diǎn),求b,c的值;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與直線AC交于另一點(diǎn)Q.
①點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M,P,Q三點(diǎn)為頂點(diǎn)的三角形是以PQ為腰的等腰直角三角形時(shí),求點(diǎn)M的坐標(biāo);
②取BC的中點(diǎn)N,連接NP,BQ.當(dāng)取最大值時(shí),點(diǎn)Q的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實(shí)數(shù)).
教師:請(qǐng)獨(dú)立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.
學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動(dòng)一員,又補(bǔ)充一些結(jié)論,并從中選擇如下四條:
①存在函數(shù),其圖像經(jīng)過(1,0)點(diǎn);
②函數(shù)圖像與坐標(biāo)軸總有三個(gè)不同的交點(diǎn);
③當(dāng)時(shí),不是y隨x的增大而增大就是y隨x的增大而減。
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);
教師:請(qǐng)你分別判斷四條結(jié)論的真假,并給出理由,最后簡(jiǎn)單寫出解決問題時(shí)所用的數(shù)學(xué)方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A(5,0)、B(-1,0)兩點(diǎn),過點(diǎn)A作直線AC⊥x軸,交直線于點(diǎn)C;
(1)求該拋物線的解析式;
(2)求點(diǎn)A關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo),判定點(diǎn)是否在拋物線上,并說明理由;
(3)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作y軸的平行線,交線段于點(diǎn)M,是否存在這樣的點(diǎn)P,使四邊形PACM是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

(1)拋物線的解析式;
(2)求△MCB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

某廠今年一月份新產(chǎn)品的研發(fā)資金為a元,以后每月新產(chǎn)品的研發(fā)資金與上月相比增長(zhǎng)率都是x,則該廠今年三月份新產(chǎn)品的研發(fā)資金y(元)關(guān)于x的函數(shù)關(guān)系式為y=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm。
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動(dòng),在△DEF移動(dòng)的同時(shí),點(diǎn)P從△ABC的頂點(diǎn)B出發(fā),以2 cm/s的速度沿BA向點(diǎn)A勻速移動(dòng)。當(dāng)△DEF的頂點(diǎn)D移動(dòng)到AC邊上時(shí),△DEF停止移動(dòng),點(diǎn)P也隨之停止移。DE與AC相交于點(diǎn)Q,連接PQ,設(shè)移動(dòng)時(shí)間為t(s)(0<t<4.5)。解答下列問題:
(1)當(dāng)t為何值時(shí),點(diǎn)A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時(shí)刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由。
(3)是否存在某一時(shí)刻t,使P、Q、F三點(diǎn)在同一條直線上?若存在,求出此時(shí)t的值;若不存在,說明理由。(圖(3)供同學(xué)們做題使用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點(diǎn),頂點(diǎn)為,點(diǎn)在這個(gè)二次函數(shù)圖象的對(duì)稱軸上.若四邊形是一個(gè)邊長(zhǎng)為2且有一個(gè)內(nèi)角為的菱形.求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊(cè)答案