如圖,分別在平面直角坐標(biāo)系中,(1)畫出以A(0,2),B(2,0),C(3,0)為頂點(diǎn)的三角形;(2)求△ABC的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,分別在平面直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段依次連接起來(lái).
(1)A(-6,-4)、B(-4,-3)、C(-2,-2)、D(0,-1)、E(2,0)、F(4,1)、G(6,2)、H(8,3).

(2)如圖A(-5,-2)、B(-4,-1)、C(-3,0)、D(-2,1)、E(-1,2)、F(0,3)、G(1,2)、H(2,1)、L(3,0)、M(4,-1)、N(5,-2).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2013•益陽(yáng))閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp-x1=x2-xp,得xp=
x1+x2
2
,同理yp=
y1+y2
2
,所以AB的中點(diǎn)坐標(biāo)為(
x1+x2
2
,
y1+y2
2
)
.由勾股定理得AB2=
.
x2-x1
  
.
2
+
.
y2-y1
  
.
2
,所以A、B兩點(diǎn)間的距離公式為AB=
(x2-x1)2+(y2-y1)2

注:上述公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問(wèn)題:
如圖2,直線l:y=2x+2與拋物線y=2x2交于A、B兩點(diǎn),P為AB的中點(diǎn),過(guò)P作x軸的垂線交拋物線于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線l平移到C點(diǎn)時(shí)得到直線l′,求兩直線l與l′的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系x0y中,已知拋物線y=a(x+1)2+c(a>0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,其頂點(diǎn)為M,若直線MC的函數(shù)表達(dá)式為y=kx-3,且cos∠BCO=
3
10
10


(1)求此拋物線的函數(shù)表達(dá)式;
(2)如圖2,若對(duì)稱軸與x軸的交點(diǎn)為N,在第三象限此拋物線上是否存在點(diǎn)P,將線段PN繞N點(diǎn)逆時(shí)針旋轉(zhuǎn)90°后,點(diǎn)P的對(duì)應(yīng)點(diǎn)Q落在直線MC上?若存在,求出點(diǎn)P的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由;
(3)如圖3,若將直線MC沿y軸向上平移m個(gè)單位,與拋物線交于D、E兩點(diǎn),與兩坐標(biāo)軸交于F、G兩點(diǎn)(點(diǎn)F、G均在線段DE上),分別過(guò)D、E兩點(diǎn)作DH⊥x軸于H,EI⊥y軸于I,當(dāng)四邊形DHIE為等腰梯形時(shí),求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,分別在平面直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段依次連接起來(lái).
(1)A(-6,-4)、B(-4,-3)、C(-2,-2)、D(0,-1)、E(2,0)、F(4,1)、G(6,2)、H(8,3).
(2)如圖,A(-5,-2)、B(-4,-1)、C(-3,0)、D(-2,1)、E(-1,2)、F(0,3)、G(1,2)、H(2,1)、L(3,0)、M(4,-1)、N(5,-2).

查看答案和解析>>

同步練習(xí)冊(cè)答案