正方形ABCD中,點E、F分別是邊AD、AB的中點,連接EF.

(1)如圖1,若點G是邊BC的中點,連接FG,則EF與FG關系為:      

(2)如圖2,若點P為BC延長線上一動點,連接FP,將線段FP以點F為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)900,得到線段FQ,連接EQ,請猜想EF、EQ、BP三者之間的數(shù)量關系,并證明你的結論;

(3)若點P為CB延長線上一動點,按照(2)中的作法,在圖3中補全圖形,并直接寫出EF、EQ、BP三者之間的數(shù)量關系:      .

 

【答案】

解:(1)垂直且相等。

(2)EF、EQ、BP三者之間的數(shù)量關系為:。

證明如下:

如圖,取BC的中點G,連接FG,

由(1)得EF=FG,EF⊥FG,

根據(jù)旋轉(zhuǎn)的性質(zhì),F(xiàn)P=FQ,∠PFQ =90°。

∴∠GFP=∠GFE—∠EFP=90°—∠EFP,

∠EFQ=∠PFQ—∠EFP=90°—∠EFP。

∴∠GFP=∠EFQ。

在△FQE和△FPG中,∵EF=GF,∠EFQ=∠GFP,F(xiàn)Q = FP,

∴△FQE≌△FPG(SAS)!郋Q=GP。

。

(3)補圖如下,F(xiàn)、EQ、BP三者之間的數(shù)量關系為:。

【解析】

試題分析:(1)EF與FG關系為垂直且相等(EF=FG且EF⊥FG)。證明如下:

∵點E、F、G分別是正方形邊AD、AB、BC的中點,

∴△AEF和△BGD是兩個全等的等腰直角三角形。

∴EF=FG,∠AFE=∠BFG=45°!唷螮FG=90°,即EF⊥FG。

(2)取BC的中點G,連接FG,則由SAS易證△FQE≌△FPG,從而EQ=GP,因此

(3)同(2)可證△FQE≌△FPG(SAS),得EQ=GP,因此,

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、已知正方形ABCD中,點E在邊DC上,DE=2,EC=1(如圖所示)把線段AE繞點A旋轉(zhuǎn),使點E落在直線BC上的點F處,則F、C兩點的距離為
1或5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在邊長為8的正方形ABCD中,點O為AD上一動點(4<OA<8),以O為圓心精英家教網(wǎng),OA的長為半徑的圓交邊CD于點M,連接OM,過點M作⊙O的切線交邊BC于N.
(1)求證:△ODM∽△MCN;
(2)設DM=x,求OA的長(用含x的代數(shù)式表示);
(3)在點O的運動過程中,設△CMN的周長為P,試用含x的代數(shù)式表示P,你能發(fā)現(xiàn)怎樣的結論?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,正方形ABCD中,點A、B的坐標分別為(0,12),(8,6),點C在第一象限.動點P在正方形ABCD的邊上,從點A出發(fā)沿A→B→C→D勻速運動,同時動點Q從點(1,0)出發(fā),以相同速度沿x軸正方向運動,當P點到D點時,兩點同時停止運動,設運動的時間為t秒.
(1)正方形邊長
 
,頂點C的坐標
 
;
(2)當P點在邊AB上運動時,△OPQ的面積S與運動時間t(秒)的函數(shù)圖象是如圖②所示的拋物線的一部分,求點P,Q運動速度;
(3)求在(2)中當t為何值時,△OPQ的面積最大,并求此時P點的坐標;
(4)如果點P、Q保持原速度速度不變,當點P沿A?B?C?D勻速運動時,OP與PQ能否相等,若能,直接寫出所有符合條件的t的值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

觀察本題的三個圖形,思考下列問題
(1)如圖1,正方形ABCD中,點M是CD上異于端點的任意一點,過點C作CN⊥BM于O,且交AD于N點.求證:BM=CN;
(2)如圖2,等邊△ABC中,點M是CA上異于端點的任意一點,過點C作射線CN交AB于點N、交BM于點O,且使∠BOC=120°.
請你判斷此時BM與CN的大小關系,并證明你的結論.
(3)如圖3,正n邊形ABCDE…An中,點M是CD上異于端點的任意一點,過點C作射線CN交DE于點N、交BM于點O,且使BM=CN.設此時∠BOC的大小為y,請你寫出y與n之間的函數(shù)關系式.
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案