【題目】如圖,在平面直角坐標系xOy中,△ABC三個頂點的坐標分別為A(﹣5,1),B(﹣4,4),C(﹣1,﹣1).

1)在圖1中畫出△ABC關于y軸對稱的圖形△A1B1C1

2)直接寫出△A1B1C1的面積;

3)在圖2y軸上找出點P,使PB+PC的值最。ūA糇鲌D痕跡).

【答案】1)詳見解析;(27;(3)詳見解析.

【解析】

1)依據(jù)軸對稱的性質(zhì),即可得到△ABC關于y軸對稱的圖形△A1B1C1;

2)依據(jù)割補法進行計算,即可得到△A1B1C1的面積;

3)連接C1B,交y軸于點P,連接PC,依據(jù)兩點之間,線段最短,即可得到PB+PC的值最。

解:(1)如圖1所示,△A1B1C1即為所求;

2)△A1B1C1的面積為:4×5×2×4×1×3×3×52041.57.57

3)如圖2,連接C1B,交y軸于點P,連接PC,則PB+PC的值最。

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=x2+mxx軸的負半軸于點A.點By軸正半軸上一點,點A關于點B的對稱點A′恰好落在拋物線上.過點A′x軸的平行線交拋物線于另一點C.若點A′的橫坐標為1,則A′C的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,進行如下操作:①分別以點A和點C為圓心,以大于的長為半徑作弧,兩弧分別相交于點M,N;②作直線MN,交線段AC于點D;③連接BD.則下列結(jié)論正確的是( )

A.BD平分∠ABCB.BDACC.AD=CDD.ABD≌△CBD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形邊長都是1,每個小格的頂點叫做格點,以格點為頂點分別按下列要求畫三角形(用陰影表示).

1)在圖(a)中,畫一個不含直角的三角形,使它的三邊長都是有理數(shù);

2)在圖(b)中,畫一個直角三角形,使它的斜邊長為;

3)在圖(c)中,畫一個直角三角形,使它的斜邊長為5,直角邊長都是無理數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)ykx+b與反比例函數(shù)yx0)的圖象相交于點A、點B,與X軸交于點C,其中點A(﹣13)和點B(﹣3,n).

1)填空:m   ,n   

2)求一次函數(shù)的解析式和AOB的面積.

3)根據(jù)圖象回答:當x為何值時,kx+b≥(請直接寫出答案)   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰的三邊分別為、、,其中,若關于的方程有兩個相等的實數(shù)根,則的周長是(

A. 9 B. 12 C. 912 D. 不能確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD的頂點坐標分別為A(﹣2,1),B(﹣4,1),C(﹣3,2),D(﹣1,2).

1)在圖中畫出四邊形ABCD,并求出四邊形ABCD的面積;

2)在圖中畫出四邊形ABCD關于x軸的對稱圖形A1B1C1D1,并分別寫出點AC的對應點A1、C1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將等腰直角三角形ABCABAC,∠BAC90°)和等腰直角三角形DEFDEDF,∠EDF90°)按圖1擺放,點DBC邊的中點上,點ADE上.

1)填空:ABEF的位置關系是   ;

2DEF繞點D按順時針方向轉(zhuǎn)動至圖2所示位置時,DF,DE分別交AB,AC于點P,Q,求證:∠BPD+DQC180°;

3)如圖2,在DEF繞點D按順時針方向轉(zhuǎn)動過程中,始終點P不到達A點,ABC的面積記為S1,四邊形APDQ的面積記為S2,那么S1S2之間是否存在不變的數(shù)量關系?若存在,請寫出它們之間的數(shù)量關系并證明;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線)與直線平行,且與直線交于點.

1)求直線的函數(shù)表達式;

2分別是直線、上兩點,點的橫坐標為,且軸,若,求的值.

查看答案和解析>>

同步練習冊答案