【題目】已知關(guān)于x的方程x2mxm-2=0.

(1)求證:無論m取何值,方程總有兩個不相等的實數(shù)根;

(2)設(shè)方程兩實數(shù)根分別為x1,x2,當(dāng)m=3時,求的值.

【答案】(1)證明見解析;(2)7.

【解析】1)先計算△=m24m2)=m24m+8,配方得到△=(m22+4由于(m220,則(m22+40,即△>0,即可得到無論m取何值該方程總有兩個不相等的實數(shù)根;

2)利用根與系數(shù)的關(guān)系,即可求解.

1∵△=m24×1×m2)=m24m+8=(m22+40

∴不論m取何實數(shù),該方程都有兩個不相等的實數(shù)根;

2當(dāng)m=3,x1+x2=﹣3,x1x2=1

x12+x22=2x1 x2==92=7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點A,O,B對應(yīng)的數(shù)分別為﹣5,0,1,點M為數(shù)軸上任意一點,其對應(yīng)的數(shù)為x.

請回答問題:

(1)A、B兩點間的距離是_____,若點M到點A、點B的距離相等,那么x的值是_____;

(2)若點A先沿著數(shù)軸向右移動6個單位長度,再向左移動4個單位長度后所對應(yīng)的數(shù)字是 ____ ;

(3)當(dāng)x為何值時,點M到點A、點B的距離之和是8;

(4)如果點M以每秒3個單位長度的速度從點O向左運動時,點A和點B分別以每秒1個單位長度和每秒4個單位長度的速度也向左運動,且三點同時出發(fā),那么幾秒種后點M運動到點A、點B之間,且點M到點A、點B的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點A的坐標(biāo)為(2,0),點B的坐標(biāo)為(0,1),點C在第一象限,對角線BD與x軸平行.直線y=x+4與x軸、y軸分別交于點E,F(xiàn).將菱形ABCD沿x軸向左平移k個單位,當(dāng)點C落在EOF的內(nèi)部時(不包括三角形的邊),k的值可能是( )

A.2 B.3 C.4 D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】世界讀書日,新華書店矩形購書優(yōu)惠活動:一次性購書不超過100元,不享受打折優(yōu)惠;一次性購書超過100元但不超過200元一律八折;一次性購書200元以上一律打六折.小麗在這次活動中,兩次購書總共付款190.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是_____元.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:小華遇到這樣一個問題:
已知:如圖1,在△ABC中,三邊的長分別為AB= ,AC= ,BC=2,求∠A的正切值.
小華是這樣解決問題的:
如圖2所示,先在一個正方形網(wǎng)格(每個小正方形的邊長均為1)中畫出格點△ABC(△ABC三個頂點都在小正方形的頂點處),然后在這個正方形網(wǎng)格中再畫一個和△ABC相似的格點△DEF,從而使問題得解.

(1)如圖2,△DEF中與∠A相等的角為 , ∠A的正切值為
(2)參考小華的方法請解決問題:若△LMN的三邊分別為LM=2,MN=2 ,LN=2 ,求∠N的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個全等的直角三角形如圖1或圖2擺放時,都可以用面積法來證明,下面是小聰利用圖1證明勾股定理的過程:

將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結(jié)DB,過點DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請參照上述證法,利用圖2完成下面的證明.

將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖2是裝有三個小輪的手拉車在“爬”樓梯時的側(cè)面示意圖,定長的輪架桿OA,OB,OC抽象為線段,有OA=OB=OC,且∠AOB=120°,折線NG﹣GH﹣HE﹣EF表示樓梯,GH,EF是水平線,NG,HE是鉛垂線,半徑相等的小輪子⊙A,⊙B與樓梯兩邊都相切,且AO∥GH.
(1)如圖2①,若點H在線段OB時,則 的值是;
(2)如果一級樓梯的高度HE=(8 +2)cm,點H到線段OB的距離d滿足條件d≤3cm,那么小輪子半徑r的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角梯形ABCO的兩邊OA,OC在坐標(biāo)軸的正半軸上,BC∥x軸,OA=OC=4,以直線x=1為對稱軸的拋物線過A,B,C三點.

(1)求該拋物線的函數(shù)解析式;
(2)已知直線l的解析式為y=x+m,它與x軸交于點G,在梯形ABCO的一邊上取點P.
①當(dāng)m=0時,如圖1,點P是拋物線對稱軸與BC的交點,過點P作PH⊥直線l于點H,連結(jié)OP,試求△OPH的面積;
②當(dāng)m=﹣3時,過點P分別作x軸、直線l的垂線,垂足為點E,F(xiàn).是否存在這樣的點P,使以P,E,F(xiàn)為頂點的三角形是等腰三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在△ABC中,BC>AC,點D在BC上,且DC=AC,∠ACB的平分線CF交AD于點F.點E是AB的中點,連接EF.
(1)求證:EF∥BC;
(2)若△ABD的面積是6,求四邊形BDFE的面積.

查看答案和解析>>

同步練習(xí)冊答案