(10分)

問題提出

我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類別應(yīng)用

(1)已知小麗和小穎購買同一種商品的平均價格分別為元/千克和元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價格的高低.

 (2)試比較圖2和圖3中兩個矩形周長M1、N1的大小(b>c).

 

 

 

 

 

 

 

聯(lián)系拓廣

小剛在超市里買了一些物品,用一個長方體的箱子“打包”,這個箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長?請說明理由.

【答案】

解:類比應(yīng)用

(1)

是正整數(shù)且

, ∴

即效力的平均價格比小穎的高。

(2)由圖知,

,∴,即,∴

∴第一個矩形的周長大于第二個矩形的周長。

聯(lián)系拓廣

設(shè)圖⑤的捆綁繩長為,則

設(shè)圖⑥的捆綁繩長為,則

設(shè)圖⑦的捆綁繩長為,則

(由式子觀察得出,也可得分。)

,∴,即,∴

∴所以第三種捆綁方法用繩最長,第二種最短。

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

21、我們在解決數(shù)學(xué)問題時,經(jīng)常采用“轉(zhuǎn)化”(或“化歸”)的思想方法,把待解決的問題,通過某種轉(zhuǎn)化過程,歸結(jié)到一類已解決或比較容易解決的問題.
譬如,在學(xué)習(xí)了一元一次方程的解法以后,進(jìn)一步研究二元一次方程組的解法時,我們通常采用“消元”的方法,把二元一次方程組轉(zhuǎn)化為一元一次方程;再譬如,在學(xué)習(xí)了三角形內(nèi)角和定理以后,進(jìn)一步研究多邊形的內(nèi)角和問題時,我們通常借助添加輔助線,把多邊形轉(zhuǎn)化為三角形,從而解決問題.
問題提出:如何把一個正方形分割成n(n≥9)個小正方形?
為解決上面問題,我們先來研究兩種簡單的“基本分割法”.
基本分割法1:如圖①,把一個正方形分割成4個小正方形,即在原來1個正方形的基礎(chǔ)上增加了3個正方形.
基本分割法2:如圖②,把一個正方形分割成6個小正方形,即在原來1個正方形的基礎(chǔ)上增加了5個正方形.

問題解決:有了上述兩種“基本分割法”后,我們就可以把一個正方形分割成n(n≥9)個小正方形.
(1)把一個正方形分割成9個小正方形.
一種方法:如圖③,把圖①中的任意1個小正方形按“基本分割法2”進(jìn)行分割,就可增加5個小正方形,從而分割成4+5=9(個)小正方形.
另一種方法:如圖④,把圖②中的任意1個小正方形按“基本分割法1”進(jìn)行分割,就可增加3個小正方形,從而分割成6+3=9(個)小正方形.
(2)把一個正方形分割成10個小正方形.
方法:如圖⑤,把圖①中的任意2個小正方形按“基本分割法1”進(jìn)行分割,就可增加3×2個小正方形,從而分割成4+3×2=10(個)小正方形.
(3)請你參照上述分割方法,把圖⑥給出的正方形分割成11個小正方形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法)
(4)把一個正方形分割成n(n≥9)個小正方形.
方法:通過“基本分割法1”、“基本分割法2”或其組合把一個正方形分割成9個、10個和11個小正方形,再在此基礎(chǔ)上每使用1次“基本分割法1”,就可增加3個小正方形,從而把一個正方形分割成12個、13個、14個小正方形,依次類推,即可把一個正方形分割成n(n≥9)個小正方形.
從上面的分法可以看出,解決問題的關(guān)鍵就是找到兩種基本分割法,然后通過這兩種基本分割法或其組合把正方形分割成n(n≥9)個小正方形.
類比應(yīng)用:仿照上面的方法,我們可以把一個正三角形分割成n(n≥9)個小正三角形.
(1)基本分割法1:把一個正三角形分割成4個小正三角形(請你在圖a中畫出草圖);
(2)基本分割法2:把一個正三角形分割成6個小正三角形(請你在圖b中畫出草圖);
(3)分別把圖c、圖d和圖e中的正三角形分割成9個、10個和11個小正三角形(用鋼筆或圓珠筆畫出草圖即可,不用說明分割方法);

(4)請你寫出把一個正三角形分割成n(n≥9)個小正三角形的分割方法(只寫出分割方法,不用畫圖).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(10分)

問題提出

我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.

問題解決

如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.

∴M-N=a2+b2-2ab=(a-b)2

∵a≠b,∴(a-b)2>0.

∴M-N>0.

∴M>N.

類別應(yīng)用

(1)已知小麗和小穎購買同一種商品的平均價格分別為元/千克和元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價格的高低.

 (2)試比較圖2和圖3中兩個矩形周長M1、N1的大小(b>c).

 

 

 

 

 

 

 

聯(lián)系拓廣

小剛在超市里買了一些物品,用一個長方體的箱子“打包”,這個箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(10分)

問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。

解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類別應(yīng)用
(1)已知小麗和小穎購買同一種商品的平均價格分別為元/千克和元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價格的高低.
(2)試比較圖2和圖3中兩個矩形周長M1、N1的大小(b>c).
聯(lián)系拓廣
小剛在超市里買了一些物品,用一個長方體的箱子“打包”,這個箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,吻哪種方法用繩最短?哪種方法用繩最長?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(青海卷)數(shù)學(xué) 題型:解答題

(2011年青海,27,10分)認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾的探究片段,完成所提出的問題.
探究1:如圖11-1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+,理由如下:
∵BO和CO分別是∠ABC和∠ACB的角平分線

探究2:如圖11-2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
探究3:如圖11-3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)
結(jié)論:                                                           .

查看答案和解析>>

同步練習(xí)冊答案