【題目】閱讀理解:如圖1,在△ABC中,當(dāng)DEBC時(shí)可以得到三組成比例線段:① ;② ;③ .反之,當(dāng)對(duì)應(yīng)線段程比例時(shí)也可以推出DEBC

理解運(yùn)用:三角形的內(nèi)接四邊形是指頂點(diǎn)在三角形各邊上的四邊形.

1)如圖2,已知矩形DEFG是△ABC的一個(gè)內(nèi)接矩形,將矩形DEFG沿CB方向向左平移得矩形PBQH,其中頂點(diǎn)D、E、F、G的對(duì)應(yīng)點(diǎn)分別為P、B、QH,在圖2中畫出平移后的圖形;

2)在(1)所得的圖形中,連接CH并延長(zhǎng)交BP的延長(zhǎng)線于點(diǎn)R,連接AR.求證:ARBC;

3)如圖3,某小區(qū)有一塊三角形空地,已知△ABC空地的邊AB=400米,BC=600米,∠ABC=45°;準(zhǔn)備在△ABC內(nèi)建一個(gè)內(nèi)接矩形廣場(chǎng)DEFG(點(diǎn)E、F在邊BC上,點(diǎn)D、G分別在邊ABAC上),三角形其余部分進(jìn)行植被綠化,按要求欲使矩形DEFG的對(duì)角線EG最短,請(qǐng)?jiān)趥溆脠D中畫出使對(duì)角線EG最短的矩形.并求出對(duì)角線EG的最短距離(不要求證明).

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)圖形見(jiàn)解析,最短距離為

【解析】

1)根據(jù)題意,利用平移的性質(zhì)畫出矩形PBQH即可;

2)如圖1中,連接CH并延長(zhǎng)交BP的延長(zhǎng)線于點(diǎn)R,連接AR,利用平行線分線段成比例,由PHBC,DGBC,可得對(duì)應(yīng)線段成比例,再由PH=DG可證RH,BC,AG,AC四條線段對(duì)應(yīng)成比例,可得到ARGH,再由HGBC,利用平行線的傳遞性,可證得結(jié)論;

3)如圖2中,作ARBCBRBC,連接CR,作BHCR,過(guò)點(diǎn)HPHBCRBPABDACG,作HQBCQ,DEBCEGFBCF ,易得到四邊形DEFG是矩形,此時(shí)矩形的對(duì)角線最短即就是EG的長(zhǎng),利用勾股定理求出GR的長(zhǎng),再求出BH的長(zhǎng),然后利用平行四邊形的對(duì)邊相等,可求出EG的長(zhǎng).

1)解:矩形PBQH如圖1所示

2)解:如圖1中,連接CH并延長(zhǎng)交BP的延長(zhǎng)線于點(diǎn)R,連接AR

∵PH∥BC,

∵DG∥BC,

∵PH=DG,

∴AR∥HG

∵HG∥BC,

∴AR∥BC

3)解:如圖2中,作AR∥BCBR⊥BC,連接CR,作BH⊥CR,過(guò)點(diǎn)HPH∥BCRBPABDACG,作HQ⊥BCQ,DE⊥BCE,GF⊥BCF

則四邊形DEFG是矩形,此時(shí)矩形的對(duì)角線最短(BH是垂線段,垂線段最短,易證EG=BH,故此時(shí)矩形的對(duì)角線EG最短).

Rt△RBC中,

∵BC=600,BR=200

∴CR=

∴BH=

由(2)可知EG=BH=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線yax2+bx+c的對(duì)稱軸為x=﹣1,且過(guò)點(diǎn)(﹣3,0),(0,﹣3).

1)求拋物線的表達(dá)式.

2)已知點(diǎn)(m,k)和點(diǎn)(n,k)在此拋物線上,其中mn,請(qǐng)判斷關(guān)于t的方程t2+mt+n0是否有實(shí)數(shù)根,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為豐富學(xué)生的文體生活,某學(xué)校準(zhǔn)備成立“聲樂(lè)、演講、舞蹈、足球、籃球”五個(gè)社團(tuán),要求每個(gè)學(xué)生都參加一個(gè)社團(tuán)且每人只能參加一個(gè)社團(tuán).為了了解即將參加每個(gè)社團(tuán)的大致人數(shù),學(xué)校對(duì)部分學(xué)生進(jìn)行了抽樣調(diào)查,在整理調(diào)查數(shù)據(jù)的過(guò)程中,繪制出如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:

1)被抽查的學(xué)生一共有人__________;

2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若全校有學(xué)生1500人,請(qǐng)你估計(jì)全校有意參加“聲樂(lè)”杜團(tuán)的學(xué)生人數(shù);

4)在“舞蹈社團(tuán)”活動(dòng)中,甲、乙、丙、丁、戊五位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)決定從這五位同學(xué)中任選兩位參加“元旦迎新匯演”,請(qǐng)用列表或畫樹(shù)狀圖的方法求出恰好選中甲、乙兩位同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中四邊形OABC是邊長(zhǎng)為6的正方形,平行于對(duì)角線AC的直線lO出發(fā),沿x軸正方向以每秒一個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),運(yùn)動(dòng)到直線l與正方形沒(méi)有交點(diǎn)為止,設(shè)直線l掃過(guò)正方形OABC的面積為S,直線l的運(yùn)動(dòng)時(shí)間為t(秒),下列能反映St之間的函數(shù)圖象的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,拋物線yax2+bx+cx軸交于AB兩點(diǎn),A(﹣5,0),與y軸交于C0,﹣5),并且對(duì)稱軸x=﹣3

1)求拋物線的解析式;

2Px軸上方的拋物線上,過(guò)P的直線yx+m與直線AC交于點(diǎn)M,與y軸交于點(diǎn)N,求PM+MN的最大值;

3)點(diǎn)D為拋物線對(duì)稱軸上一點(diǎn),

①當(dāng)△ACD是以AC為直角邊的直角三角形時(shí),求D點(diǎn)坐標(biāo);

②若△ACD是銳角三角形,求點(diǎn)D的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某中學(xué)兩座教學(xué)樓中間有個(gè)路燈,甲、乙兩個(gè)人分別在樓上觀察路燈頂端,視線所及如圖①所示.根據(jù)實(shí)際情況畫出平面圖形如圖②,CDDFABDF,EFDF,甲從點(diǎn)C可以看到點(diǎn)G處,乙從點(diǎn)E恰巧可以看到點(diǎn)D處,點(diǎn)BDF的中點(diǎn),路燈AB5.5米,DF=120米,BG=10.5米,求甲、乙兩人的觀測(cè)點(diǎn)到地面的距離的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示是我國(guó)古代城市用以滯洪或分洪系統(tǒng)的局部截面原理圖,圖中為下水管道口直徑,為可繞轉(zhuǎn)軸自由轉(zhuǎn)動(dòng)的閥門,平時(shí)閥門被管道中排出的水沖開(kāi),可排出城市污水:當(dāng)河水上漲時(shí),閥門會(huì)因河水壓迫而關(guān)閉,以防止河水倒灌入城中.若閥門的直徑為檢修時(shí)閥門開(kāi)啟的位置,且

1)直接寫出閥門被下水道的水沖開(kāi)與被河水關(guān)閉過(guò)程中的取值范圍;

2)為了觀測(cè)水位,當(dāng)下水道的水沖開(kāi)閥門到達(dá)位置時(shí),在點(diǎn)處測(cè)得俯角,若此時(shí)點(diǎn)恰好與下水道的水平面齊平,求此時(shí)下水道內(nèi)水的深度.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y1x+2與反比例函數(shù)y2的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(1,a).

1)求出k的值及點(diǎn)B的坐標(biāo);

2)根據(jù)圖象,寫出y1y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系的坐標(biāo)軸上按如下規(guī)律取點(diǎn):軸正半軸上,軸正半軸上,軸負(fù)半軸上,軸負(fù)半軸上,軸正半軸上,......,且......,設(shè)......,有坐標(biāo)分別為,......,

1)當(dāng)時(shí),求的值;

2)若,求的值;

3)當(dāng)時(shí),直接寫出用含為正整數(shù))的式子表示軸負(fù)半軸上所取點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案