(1)證明:∵CE平分∠BCA,
∴∠BCE=∠ECP,
又∵MN∥BC,
∴∠BCE=∠CEP,
∴∠ECP=∠CEP,
∴PE=PC;
同理PF=PC,
∴PE=PF;
(2)解:當(dāng)點P運動到AC邊中點時,四邊形AECF是矩形.理由如下:
由(1)可知PE=PF,
∵P是AC中點,
∴AP=PC,
∴四邊形AECF是平行四邊形.
∵CE、CF分別平分∠BCA、∠ACD,
且∠BCA+∠ACD=180°,
∴∠ECF=∠ECP+∠PCF=
(∠BCA+∠ACD)=
×180°=90°,
∴平行四邊形AECF是矩形;
(3)解:若四邊形AECF是正方形,則AC⊥EF,AC=2AP.
∵EF∥BC,
∴AC⊥BC,
∴△ABC是直角三角形,且∠ACB=90°,
∴tan∠BAC=
=
=
,
∴∠BAC=30°.
分析:(1)可證明PE=PC,PF=PC,從而得到PE=PF;
(2)由一對鄰補角的平分線互相垂直,得出∠ECF=90°,故要使四邊形AECF是矩形,只需四邊形AECF是平行四邊形即可.由(1)知PE=PF,則點P運動到AC邊中點時,四邊形AECF是矩形.
(3)由正方形的對角線相等且互相垂直,可知AC⊥EF,AC=2AP.又EF∥BC,得出AC⊥BC,在直角△ABC中,根據(jù)銳角三角函數(shù)的定義及特殊角的三角函數(shù)值求出∠A的大。
點評:此題綜合考查了平行線的性質(zhì),等腰三角形的判定,矩形的判定,正方形的性質(zhì),銳角三角函數(shù)的定義及特殊角的三角函數(shù)值等知識點,難度較大.