【題目】已知,點A,點B分別在線段MN,PQ上∠ACB﹣∠MAC=∠CBP

1)如圖1,求證:MNPQ;

2)分別過點A和點C作直線AG、CH使AGCH,以點B為頂點的直角∠DBI繞點B旋轉(zhuǎn),并且∠DBI的兩邊分別與直線CHAG交于點F和點E,如圖2試判斷∠CFB、∠BEG是之間的數(shù)量關(guān)系,并證明;

3)在(2)的條件下,若BDAE恰好分別平分∠CBP和∠CAN,并且∠ACB60°,求∠CFB的度數(shù).

【答案】1)見解析;(2)∠CFB﹣∠BEG90°,證明見解析;(3)∠CFB120°.

【解析】

1)過CCEMN,根據(jù)平行線判定和性質(zhì)證出CEPQ;(2)過BBRAG,根據(jù)平行線判定和性質(zhì)證出∠BEG90°﹣∠RBF90°﹣(180°﹣∠CFB);(3)過BBRAG,根據(jù)平行線判定和性質(zhì)證出∠NAE=∠AES,∠QBE=∠EBC,根據(jù)角平分線定義得:∠CAE=∠AES,再證∠AEB=∠AES+BES=∠CAE+CBE,∠AEB150°,∠BEG30°.

1)過CCEMN

∴∠1=∠MAC,

∵∠2=∠ACB﹣∠1

∴∠2=∠ACB﹣∠MAC,

∵∠ACB﹣∠MAC=∠CBP,

∴∠2=∠CBP

CEPQ,

MNPQ

2)過BBRAG,

AGCH,

BRHF,

∴∠BEG=∠EBR,∠RBF+CFB180°,

∵∠EBF90°,

∴∠BEG=∠EBR90°﹣∠RBF,

∴∠BEG90°﹣∠RBF90°﹣(180°﹣∠CFB),

∴∠CFB﹣∠BEG90°;

3)過EESMN

MNPQ,

ESPQ,

∴∠NAE=∠AES,∠QBE=∠EBC,

BDAE分別平分∠CBP和∠CAN,

∴∠NAE=∠EAC,∠CBD=∠DBP,

∴∠CAE=∠AES,

∵∠EBD90°,

∴∠EBQ+PBD=∠EBC+CBD90°,

∴∠QBE=∠EBC,

∴∠AEB=∠AES+BES=∠CAE+CBE

∵∠ACB60°,

∴∠AEB150°

∴∠BEG30°,

∵∠CFB﹣∠BEG90°,

∴∠CFB120°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD中,點P是CD的中點,∠BCD=60°,射線AP交BC的延長線于點E,射線BP交DE于點K,點O是線段BK的中點,作BM⊥AE于點M,作KN⊥AE于點N,連結(jié)MO、NO,以下四個結(jié)論:①△OMN是等腰三角形;②tan∠OMN= ;③BP=4PK;④PMPA=3PD2 , 其中正確的是( )

A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)經(jīng)過點A(﹣3,0)、B(1,0)、C(﹣2,1),交y軸于點M.

(1)求拋物線的表達式;
(2)D為拋物線在第二象限部分上的一點,作DE垂直x軸于點E,交線段AM于點F,求線段DF長度的最大值,并求此時點D的坐標(biāo);
(3)拋物線上是否存在一點P,作PN垂直x軸于點N,使得以點P、A、N為頂點的三角形與△MAO相似(不包括全等)?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是∠ABC的平分線,EDBC,∠4=∠5,則EF也是∠AED的平分線.完成下列推理過程:

證明:∵BD是∠ABC的平分線(已知)

∴∠1=∠2(角平分線定義)

EDBC(已知)

∴∠5=∠2   

∴∠1=∠5(等量代換)

∵∠4=∠5(已知)

EF      

∴∠3=∠1   

∴∠3=∠4(等量代換)

EF是∠AED的平分線(角平分線定義)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正△ABC的邊長為2,以BC邊上的高AB1為邊作正△AB1C1,△ABC與△AB1C1公共部分的面積記為S1;再以正△AB1C1邊B1C1上的高AB2為邊作正△AB2C2,△AB1C1與△AB2C2公共部分的面積記為S2;…,以此類推,則Sn=____.(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC為半圓的直徑,O為圓心,D是弧AC的中點,四邊形ABCD的對角線AC,BD交于點E,BC= ,CD= ,則sin∠AEB的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一塊直角三角板ABC中,∠C=90°,∠A=30°,BC=1,將另一個含30°角的△EDF的30°角的頂點D放在AB邊上,E,F(xiàn)分別在AC,BC上,當(dāng)點D在AB邊上移動時,DE始終與AB垂直,若△CEF與△DEF相似,則AD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰三角形ABC的底角為72°,腰AB的垂直平分線交另一腰AC于點E,垂足為D,連接BE,則下列結(jié)論錯誤的是(

A. ∠EBC36° B. BC = AE

C. 圖中有2個等腰三角形 D. DE平分∠AEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)所示,∠AOB、∠COD都是直角.

(1)試判斷∠AOC與∠BOD的大小關(guān)系,并說明理由;

(2)若∠BOC=60°,求∠AOD的度數(shù);

(3)猜想∠AOD與∠BOC在數(shù)量上是相等,互余,還是互補的關(guān)系,并說明理由;

(4)當(dāng)∠COD繞著點O旋轉(zhuǎn)到圖(2)所示位置時,你在(3)中的猜想還成立嗎?請用你所學(xué)的知識加以說明.

查看答案和解析>>

同步練習(xí)冊答案