已知二次函數(shù)的圖象如圖.
(1)求它的對稱軸與軸交點(diǎn)D的坐標(biāo);
(2)將該拋物線沿它的對稱軸向上平移,設(shè)平移后的拋物線與軸,軸的交點(diǎn)分別為A、B、C三點(diǎn),若∠ACB=90°,求此時拋物線的解析式;
(3)設(shè)(2)中平移后的拋物線的頂點(diǎn)為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說明理由.
解: (1)由得
∴D(3,0)
(2)方法一:
如圖1, 設(shè)平移后的拋物線的解析式為
則C OC=
令 即
得
∴A,B
∴
∵
即:
得 (舍去)
∴拋物線的解析式為
方法二:
∵
∴頂點(diǎn)坐標(biāo)
設(shè)拋物線向上平移h個單位
則得到,頂點(diǎn)坐標(biāo)
∴平移后的拋物線:
當(dāng)時,
∴ A B
∵∠ACB=90° ∴△AOC∽△COB
∴OA·OB
解得 ,
∴平移后的拋物線:
(3)方法一:
如圖2, 由拋物線的解析式可得
A(-2 ,0),B(8,0) ,C(4,0) ,M
過C、M作直線,連結(jié)CD,過M作MH垂直y軸于H
則
∴
在Rt△COD中,CD==AD
∴點(diǎn)C在⊙D上
∵
∴
∴△CDM是直角三角形,∴CD⊥CM
∴直線CM與⊙D相切
方法二:
如圖3, 由拋物線的解析式可得
A(-2 ,0),B(8,0) ,C(4,0) ,M
作直線CM,過D作DE⊥CM于E, 過M作MH垂直y軸于H
則,
由勾股定理得
∵DM∥OC
∴∠MCH=∠EMD
∴Rt△CMH∽Rt△DME
∴ 得
由(2)知
∴⊙D的半徑為5
∴直線CM與⊙D相切
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一棵樹在一次強(qiáng)臺風(fēng)中于離地面3米處折斷倒下,倒下部分與地面成30°角,這棵樹在折斷前的高度為( 。
A. 6米 B. 9米 C. 12米 D. 15米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在一個不透明的盒子中裝有n個小球,它們只有顏色上的區(qū)別,其中有2個紅球.每次摸球前先將盒中的球搖勻,隨機(jī)摸出一個球記下顏色后再放回盒中,通過大量重復(fù)摸球?qū)嶒?yàn)后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定于0.2,那么可以推算出n大約是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖所示,正方形網(wǎng)格中,為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).
(1)把沿方向平移后,點(diǎn)移到點(diǎn),在網(wǎng)格中畫出平移后得到的;
(2)把繞點(diǎn)按逆時針方向旋轉(zhuǎn),在網(wǎng)格中畫出旋轉(zhuǎn)后的;
(3)如果網(wǎng)格中小正方形的邊長為1,求點(diǎn)經(jīng)過(1)、(2)變換的路徑總長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖2,直線l截兩平行直線a、b,則下列式子不一定成立的是( )
A.∠1=∠5 B. ∠2=∠4
C. ∠3=∠5 D. ∠5=∠2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com