【題目】在Rt△ABC中,∠ACB=90°,AC=BC,D為BC中點(diǎn),CE⊥AD于E,BF∥AC交CE的延長線于F.
(1)求證:△ACD≌△CBF;
(2)求證:AB垂直平分DF.
【答案】見解析
【解析】
試題分析:(1)根據(jù)∠ACB=90°,求證∠CAD=∠BCF,再利用BF∥AC,求證∠ACB=∠CBF=90°,然后利用ASA即可證明△ACD≌△CBF.
(2)先根據(jù)ASA判定△ACD≌△CBF得到BF=BD,再根據(jù)角度之間的數(shù)量關(guān)系求出∠ABC=∠ABF,即BA是∠FBD的平分線,從而利用等腰三角形三線合一的性質(zhì)求證即可.
解:(1)∵在Rt△ABC中,∠ACB=90°,AC=BC,
∴∠CAB=∠CBA=45°,
∵CE⊥AD,
∴∠CAD=∠BCF,
∵BF∥AC,
∴∠FBA=∠CAB=45°
∴∠ACB=∠CBF=90°,
在△ACD與△CBF中,
∵,
∴△ACD≌△CBF;
(2)證明:∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,
∴∠BCE=∠CAE.
∵AC⊥BC,BF∥AC.
∴BF⊥BC.
∴∠ACD=∠CBF=90°,
在△ACD與△CBF中,
∵,
∴△ACD≌△CBF,
∴CD=BF.
∵CD=BD=BC,
∴BF=BD.
∴△BFD為等腰直角三角形.
∵∠ACB=90°,CA=CB,
∴∠ABC=45°.
∵∠FBD=90°,
∴∠ABF=45°.
∴∠ABC=∠ABF,即BA是∠FBD的平分線.
∴BA是FD邊上的高線,BA又是邊FD的中線,
即AB垂直平分DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點(diǎn)E,交BC于點(diǎn)D,過點(diǎn)E做直線l∥BC.
(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;
(2)若∠ABC的平分線BF交AD于點(diǎn)F,求證:BE=EF;
(3)在(2)的條件下,若DE=4,DF=3,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,二次函數(shù)的圖像過點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P 從 A 出發(fā),在線段 AB 上沿 A → B 的方向以每秒 2 個(gè)單位長度的速度運(yùn)動(dòng),過點(diǎn)P作 PD⊥y 于點(diǎn) D ,交拋物線于點(diǎn) C .設(shè)運(yùn)動(dòng)時(shí)間為 t (秒).
(1)求二次函數(shù)的表達(dá)式;
(2)連接 BC ,當(dāng)t=時(shí),求△BCP的面積;
(3)如圖 2,動(dòng)點(diǎn) P 從 A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線段 OA 上沿 O→A 的方向以 1個(gè)單位長度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P 與 B 重合時(shí),P 、 Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ 、 PQ ,將△DPQ沿直線 PC 折疊到 △DPE .在運(yùn)動(dòng)過程中,設(shè) △DPE 和 △OAB重合部分的面積為 S ,直接寫出 S 與 t 的函數(shù)關(guān)系式及 t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為提倡節(jié)約用水,采取分段收費(fèi),若用戶每月用水不超過20立方米,每立方米收費(fèi)2元;若用水超過20立方米,超過部分每立方米加收1元.小明家5月份交水費(fèi)64元,則他家該月用水量為( )
A. 34立方米 B. 32立方米 C. 30立方米 D. 28立方米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列命題:
(1)如果a<0,b>0,那么a+b<0;
(2)如果兩個(gè)三角形的3個(gè)角對應(yīng)相等,那么這兩個(gè)三角形全等;
(3)同角的補(bǔ)角相等;
(4)直角都相等.
其中真命題的個(gè)數(shù)是( ).
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,點(diǎn)E是邊AB上的動(dòng)點(diǎn),點(diǎn)F是射線CD上一點(diǎn),射線ED和射線AF交于點(diǎn)G,且∠AGE=∠DAB.
(1)求線段CD的長;
(2)如果△AEC是以EG為腰的等腰三角形,求線段AE的長;
(3)如果點(diǎn)F在邊CD上(不與點(diǎn)C、D重合),設(shè)AE=x,DF=y,求y關(guān)于x的函數(shù)解析式,并寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( 。
A.7a+a=7a2
B.5y﹣3y=2
C.3x2y﹣2yx2=x2y
D.3a+2b=5ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一元二次方程x2-2x-m=0無實(shí)數(shù)根,則一次函數(shù)y=(m+1)x+m-1的圖象不經(jīng)過第( )象限.
A. 四 B. 三 C. 二 D. 一
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com