精英家教網 > 初中數學 > 題目詳情
(2010•溫州)勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構成,它可以驗證勾股定理.在右圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,點H在邊QR上,點D,E在邊PR上,點G,F(xiàn)在邊PQ上,那么△PQR的周長等于   
【答案】分析:在直角△ABC中,根據三角函數即可求得AC,進而由等邊三角形的性質和正方形的性質及三角函數就可求得QR的長,在直角△QRP中運用三角函數即可得到RP、QP的長,就可求出△PQR的周長.
解答:解:延長BA交QR于點M,連接AR,AP.
∵AC=GC,BC=FC,∠ACB=∠GCF,
∴△ABC≌△GFC,
∴∠CGF=∠BAC=30°,
∴∠HGQ=60°,
∵∠HAC=∠BAD=90°,
∴∠BAC+∠DAH=180°,
又AD∥QR,
∴∠RHA+∠DAH=180°,
∴∠RHA=∠BAC=30°,
∴∠QHG=60°,
∴∠Q=∠QHG=∠QGH=60°,
∴△QHG是等邊三角形.
AC=AB•cos30°=4×=2
則QH=HA=HG=AC=2
在直角△HMA中,HM=AH•sin60°=2×=3.AM=HA•cos60°=
在直角△AMR中,MR=AD=AB=4.
∴QR=2+3+4=7+2
∴QP=2QR=14+4
PR=QR•=7+6.
∴△PQR的周長等于RP+QP+QR=27+13
故答案為:27+13
點評:正確運用三角函數以及勾股定理是解決本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2011年河北省中考數學考前模擬測試精選題(六)(解析版) 題型:填空題

(2010•溫州)勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構成,它可以驗證勾股定理.在右圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,點H在邊QR上,點D,E在邊PR上,點G,F(xiàn)在邊PQ上,那么△PQR的周長等于   

查看答案和解析>>

科目:初中數學 來源:2011年浙江省杭州市中考數學模擬試卷(06)(解析版) 題型:填空題

(2010•溫州)勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構成,它可以驗證勾股定理.在右圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,點H在邊QR上,點D,E在邊PR上,點G,F(xiàn)在邊PQ上,那么△PQR的周長等于   

查看答案和解析>>

科目:初中數學 來源:2010年全國中考數學試題匯編《三角形》(07)(解析版) 題型:填空題

(2010•溫州)勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構成,它可以驗證勾股定理.在右圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,點H在邊QR上,點D,E在邊PR上,點G,F(xiàn)在邊PQ上,那么△PQR的周長等于   

查看答案和解析>>

科目:初中數學 來源:2010年浙江省溫州市中考數學試卷(解析版) 題型:填空題

(2010•溫州)勾股定理有著悠久的歷史,它曾引起很多人的興趣.1955年希臘發(fā)行了二枚以勾股圖為背景的郵票.所謂勾股圖是指以直角三角形的三邊為邊向外作正方形構成,它可以驗證勾股定理.在右圖的勾股圖中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,點H在邊QR上,點D,E在邊PR上,點G,F(xiàn)在邊PQ上,那么△PQR的周長等于   

查看答案和解析>>

同步練習冊答案