已知點(diǎn)(a,b)不在第二、四象限,化簡
-a2b3
等于
ab
-b
ab
-b
分析:先根據(jù)點(diǎn)(a,b)不在第二、四象限可知此點(diǎn)在一三象限,再分兩種情況進(jìn)行討論即可.
解答:解:當(dāng)點(diǎn)(a,b)在第一象限時,
∵a>0,b>0,
∴a2b3>0,
-a2b3
無意義;
當(dāng)點(diǎn)(a,b)在第三象限時,
∵a<0,b<0,
∴a2>0,b3<0,
-a2b3
=ab
-b

故答案為:ab
-b
點(diǎn)評:本題考查的是二次根式的性質(zhì)與化簡,熟知各象限內(nèi)點(diǎn)的坐標(biāo)特點(diǎn)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知點(diǎn)A(2,4)在反比例函數(shù)y=
k
x
(x>0)
的圖象S1上,將雙曲線S1沿y軸翻折后得到的是反比例函數(shù)y=-
k
x
的圖象S2,直線AB交y軸于點(diǎn)B(0,3),交x軸于點(diǎn)C,P為線段BC上的一個動點(diǎn)(點(diǎn)P與B、C不重合),過P作x軸的垂線與雙曲線S2在第二象限相交于點(diǎn)E.
(1)求雙曲線S2和直線AB的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m,線段PE的長為h,求h與m之間的函數(shù)關(guān)系,并寫出自變量m的取值范圍;
(3)在線段BC上是否存在點(diǎn)P,使得P、E、A為頂點(diǎn)的三角形與△BOC相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)設(shè)拋物線y=ax2+bx+c與x軸交于兩個不同的點(diǎn)A(-l,0)、B(4,0),與y軸交于點(diǎn)C(0,2).
(1)求拋物線的解析式:
(2)問拋物線上是否存在一點(diǎn)M,使得S△ABM=2S△ABC?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(3)已知點(diǎn)D(1,n)在拋物線上,過點(diǎn)A的直線y=-x-1交拋物線于另一點(diǎn)E.
①求tan∠ABD的值:
②若點(diǎn)P在x軸上,以點(diǎn)P、B、D為頂點(diǎn)的三角形與△AEB相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(2,a)在拋物線y=x2
(1)求A點(diǎn)的坐標(biāo);
(2)在x軸上是否存在點(diǎn)P,使△OAP是等腰三角形?若存在寫出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

已知點(diǎn)(a,b)不在第二、四象限,化簡數(shù)學(xué)公式等于________.

查看答案和解析>>

同步練習(xí)冊答案