【題目】某學生數學的平時成績、期中考試成績、期末考試成績分別是84分、80分、90分。如果按平時成績:期中考試成績:期末考試成績=3:3:4進行總評,那么他本學期數學總評分應為______分。
科目:初中數學 來源: 題型:
【題目】如圖①,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,連接BD,CE,BD和CE相交于點F,若△ABC不動,將△ADE繞點A任意旋轉一個角度.
(1)求證:△BAD≌△CAE.
(2)如圖①,若∠BAC=∠DAE=90°,判斷線段BD與CE的關系,并說明理由;
(3)如圖②,若∠BAC=∠DAE=60°,求∠BFC的度數;
(4)如圖③,若∠BAC=∠DAE= ,直接寫出∠BFC的度數(不需說明理由)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規(guī)作圖作∠AOB的平分線方法如下:以O為圓心,任意長為半徑畫弧交OA,OB于C,D,再分別以點C,D為圓心,以大于CD長為半徑畫弧,兩弧交于點P,作射線OP.由作法得△OCP≌△ODP的根據是( )
A. SAS B. ASA C. AAS D. SSS
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.
(1)求證:AD平分∠BAC;
(2)直接寫出AB+AC與AE之間的等量關系.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在¨ABCD中,過點D作DE⊥AB與點E,點F在邊CD上,DF=BE,連接AF,BF
(1)求證:四邊形BFDE是矩形;
(2)若CF=3,BF=4,DF=5,求證:AF平分∠DAB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在正方形ABCD中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠DCP的平分線上一點.若∠AMN=90°,求證:AM=MN.
下面給出一種證明的思路,你可以按這一思路證明,也可以選擇另外的方法證明.
證明:在邊AB上截取AE=MC,連ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面請你完成余下的證明過程)
(2)若將(1)中的“正方形ABCD”改為“正三角形ABC”(如圖2),N是∠ACP的平分線上一點,則當∠AMN=60°時,結論AM=MN是否還成立?請說明理由.
(3)若將(1)中的“正方形ABCD”改為“正邊形ABCD…X”,請你作出猜想:當∠AMN=°時,結論AM=MN仍然成立.(直接寫出答案,不需要證明)
圖1 圖2
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com