【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,CDABD,AD=2,CD=4.BCD的角平分線CE與過(guò)點(diǎn)B的切線l交過(guò)點(diǎn)E.

(1)求⊙O半徑的長(zhǎng);

(2)求點(diǎn)E到直線BC的距離.

【答案】(1)5;(2)8;

【解析】

(1)如圖1中,連接OC,設(shè)⊙O的半徑為r.在RtCDO中,利用勾股定理即可解決問(wèn)題.

(2)如圖2中,過(guò)點(diǎn)EEFCD,垂足為點(diǎn)F,EGCB,垂足為G,則∠EFD=90°,只要證明四邊形BDFE是矩形,求出EF,利用角平分線的性質(zhì)可得EG=EF即可解決問(wèn)題.

(1)如圖1中,連接OC,設(shè)⊙O的半徑為r.

AD=2,OD=r﹣2,

CDAB,

∴∠CDO=90°,

RtCDO中,∵CD2+DO2=CO2,

42+(r﹣2)2=r2,

r=5,

O的半徑為5.

(2)如圖2中,過(guò)點(diǎn)EEFCD,垂足為點(diǎn)F,EGCB,垂足為G,則∠EFD=90°,

∵直線l切⊙OB,

ABl,

∴∠DBE=90°,

CDAB,

∴∠BDF=90°,

∴四邊形BDFE是矩形,

EF=BO+OD=8,

∵點(diǎn)E在∠BCD的平分線上,

EG=EF=8.

∴點(diǎn)E到直線BC的距離為8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx﹣1的圖象經(jīng)過(guò)點(diǎn)P,且y的值隨x值的增大而增大,則點(diǎn)P的坐標(biāo)可以為( 。

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點(diǎn),CF切半圓O于點(diǎn)C,BD⊥CF于為點(diǎn)D,BD與半圓O交于點(diǎn)E.

(1)求證:BC平分∠ABD.

(2)DC=8,BE=4,求圓的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的弦,AB=2,點(diǎn)C上運(yùn)動(dòng),且∠ACB=30°.

(1)求⊙O的半徑;

(2)設(shè)點(diǎn)C到直線AB的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在直線上,過(guò)點(diǎn)軸交直線于點(diǎn),以點(diǎn)為直角頂點(diǎn),為直角邊在的右側(cè)作等腰直角,再過(guò)點(diǎn)軸,分別交直線兩點(diǎn),以點(diǎn)為直角項(xiàng)點(diǎn),為直角邊在的右側(cè)作等腰直角…,按此規(guī)律進(jìn)行下去,則等腰直角的面積為___. (用含正整數(shù)的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,∠C=90°,B=30°,AB=10,點(diǎn)D是射線CB上的一個(gè)動(dòng)點(diǎn),ADE是等邊三角形,點(diǎn)FAB的中點(diǎn),連接EF.

(1)如圖,點(diǎn)D在線段CB上時(shí),

①求證:AEF≌△ADC;

②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;

(2)當(dāng)∠DAB=15°時(shí),求ADE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,半徑OAOB,過(guò)OA的中點(diǎn)CFDOB交⊙OD、F兩點(diǎn),且CD,以O為圓心,OC為半徑作,交OBE點(diǎn).

1)求⊙O的半徑OA的長(zhǎng);

2)計(jì)算陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O中,AB是⊙O的直徑,G為弦AE的中點(diǎn),連接OG并延長(zhǎng)交⊙O于點(diǎn)D,連接BDAE于點(diǎn)F,延長(zhǎng)AE至點(diǎn)C,使得FC=BC,連接BC

(1)求證:BC是⊙O的切線;

(2)O的半徑為5,tanA=,求FD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是正方形的邊上一點(diǎn),下列條件中:;②;③.能使的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案