【題目】已知梯形中,∥,且,,。
⑴如圖,P為上的一點(diǎn),滿足∠BPC=∠A,求AP的長(zhǎng);
⑵如果點(diǎn)P在邊上移動(dòng)(點(diǎn)P與點(diǎn)不重合),且滿足∠BPE=∠A,交直線于點(diǎn)E,同時(shí)交直線DC于點(diǎn)。
①當(dāng)點(diǎn)在線段DC的延長(zhǎng)線上時(shí),設(shè),CQ=y,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
②寫(xiě)CE=1時(shí),寫(xiě)出AP的長(zhǎng)(不必寫(xiě)解答過(guò)程)
【答案】⑴的長(zhǎng)1或4;⑵① ;②或3-
【解析】
(1)當(dāng)∠BPC=∠A時(shí),∠A+∠APB+∠ABP=180°,而∠APB+∠BPC+∠DPC=180°,因此∠ABP=∠DPC,此時(shí)三角形APB與三角形DPC相似,那么可得出關(guān)于AP,PD,AB,CD的比例關(guān)系式,AB,CD的值題中已經(jīng)告訴,可以先用AP表示出PD,然后代入上面得出的比例關(guān)系式中求出AP的長(zhǎng).
(2)①與(1)的方法類(lèi)似,只不過(guò)把DC換成了DQ,那么只要用DC+CQ就能表示出DQ了.然后按得出的關(guān)于AB,AP,PD,DQ的比例關(guān)系式,得出x,y的函數(shù)關(guān)系式.
②和①的方法類(lèi)似,但是要多一步,要先通過(guò)平行得出三角形PDQ和CEQ相似,根據(jù)CE的長(zhǎng),用AP表示出PD,然后根據(jù)PD,DQ,QC,CE的比例關(guān)系用AP表示出DQ,然后按①的步驟進(jìn)行求解即可.
解:⑴,,
,
又梯形中,,,
,
,
設(shè),,
,
解得,,
的長(zhǎng)1或4;
⑵①由⑴易得(如圖),
,即,
②當(dāng)CE=1時(shí),
∵△PDQ∽△ECQ,
∴,
或,
,
解得:AP=2或3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(x,y)和Q(x,y′),給出如下定義:如果y′=,那么稱(chēng)點(diǎn)Q為點(diǎn)P的“伴隨點(diǎn)”.
例如:點(diǎn)(5,6)的“伴隨點(diǎn)”為點(diǎn)(5,6);點(diǎn)(﹣5,6)的“伴隨點(diǎn)”為點(diǎn)(﹣5,﹣6).
(1)直接寫(xiě)出點(diǎn)A(2,1)的“伴隨點(diǎn)”A′的坐標(biāo).
(2)點(diǎn)B(m,m+1)在函數(shù)y=kx+3的圖象上,若其“伴隨點(diǎn)”B′的縱坐標(biāo)為2,求函數(shù)y=kx+3的解析式.
(3)點(diǎn)C、D在函數(shù)y=﹣x2+4的圖象上,且點(diǎn)C、D關(guān)于y軸對(duì)稱(chēng),點(diǎn)D的“伴隨點(diǎn)”為D′.若點(diǎn)C在第一象限,且CD=DD′,求此時(shí)“伴隨點(diǎn)”D′的橫坐標(biāo).
(4)點(diǎn)E在函數(shù)y=﹣x2+n(﹣1≤x≤2)的圖象上,若其“伴隨點(diǎn)”E′的縱坐標(biāo)y′的最大值為m(1≤m≤3),直接寫(xiě)出實(shí)數(shù)n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】使得函數(shù)值為0的自變量的值稱(chēng)為函數(shù)的零點(diǎn).例如,對(duì)于函數(shù)y=x﹣1,令y=0可得x=1,我們說(shuō)1是函數(shù)y=x﹣1的零點(diǎn).已知函數(shù)y=x2﹣2mx﹣2(m+3)(m為常數(shù))
(1)當(dāng)m=0時(shí),求該函數(shù)的零點(diǎn).
(2)證明:無(wú)論m取何值,該函數(shù)總有兩個(gè)零點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1=k1x+b與反比例函數(shù)的圖象交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),已知點(diǎn)A的坐標(biāo)是(6,2)點(diǎn)B的縱坐標(biāo)是﹣3.
(1)求反比例函數(shù)和直線l1的表達(dá)式;
(2)根據(jù)圖象直接寫(xiě)出k1x+b>的解集;
(3)將直線l1:沿y軸向上平移后的直線l2與反比例函數(shù)在第一象限內(nèi)交于點(diǎn)C,如果△ABC的面積為30,求平移后的直線l2的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:平行四邊形ABCD中,E為AB中點(diǎn),,連E、F交AC于G,則AG:GC=______________;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備從體育用品商店一次性購(gòu)買(mǎi)若干個(gè)籃球和足球(每個(gè)籃球的價(jià)格相同,每個(gè)足球的價(jià)格相同),購(gòu)買(mǎi)1個(gè)足球和2個(gè)籃球共需270元;購(gòu)買(mǎi)2個(gè)足球和3個(gè)籃球共需464元.
(1)問(wèn)足球和籃球的單價(jià)各是多少元?
(2)若購(gòu)買(mǎi)足球和籃球共20個(gè),且購(gòu)買(mǎi)籃球的個(gè)數(shù)不超過(guò)足球個(gè)數(shù)的2倍,購(gòu)買(mǎi)球的總費(fèi)用不超過(guò)1910元,問(wèn)該學(xué)校有哪幾種不同的購(gòu)買(mǎi)方案?哪種方案最省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,弦CD⊥AB,垂足為點(diǎn)E,CF⊥AF,且CF=CE.
(1)求證:CF是⊙O的切線;
(2)若sin∠BAC=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以AB為直徑,點(diǎn)O為圓心的半圓上有一點(diǎn)C,且∠ABC=60°,點(diǎn)D為AO上一點(diǎn).將△DBC沿直線DC對(duì)折得到△DB'C,點(diǎn)B的對(duì)應(yīng)點(diǎn)為B′,且B'C與半圓相切于點(diǎn)C,連接B′O交半圓于點(diǎn)E.
(1)求證:B'D⊥AB;
(2)當(dāng)AB=2時(shí),求圖中陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為培養(yǎng)學(xué)生的創(chuàng)造性思維,學(xué)校舉行科技小制作比賽.對(duì)公開(kāi)征集到的科技小制作作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),并制作了如下統(tǒng)計(jì)圖.
(1)學(xué)校共征集到作品共 件;
(2)經(jīng)過(guò)評(píng)選后,有2名男生和2名女生獲得一等獎(jiǎng).現(xiàn)要從這4位同學(xué)中抽兩人去參加表彰座談會(huì),請(qǐng)用樹(shù)狀圖或列表法求出恰好抽中一男一女的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com