精英家教網 > 初中數學 > 題目詳情
精英家教網如圖,C為線段AB的中點,AD∥EC,AD=EC,求證:CD=EB.
分析:根據兩直線平行,同位角相等,即可得出∠DAC=∠ECB,再根據C為線段AB的中點,可知AC=CB,再根據SAS即可判斷出∴△ADC≌△CEB,從而得出CE=EB.
解答:證明:∵AD∥CE,
∴∠DAC=∠ECB,
∵C為線段AB的中點,
∴AC=CB,
在△ADC和△CEB中,
AD=CE
∠DAC=∠
AC=CB
ECB

∴△ADC≌△CEB,
∴CE=EB.
點評:本題主要考查了全等三角形的證明方法,平行線的性質以及中點的性質,難度適中.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

22、如圖,C為線段AB的中點,N為線段CB的中點,CN=1cm.求圖中所有線段的長度的和.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,M為線段AB的中點,AE與BD交于點C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.
(1)寫出圖中兩對相似三角形;
(2)連接FG,如果α=45°,AB=4
2
,AF=3,求FG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,C為線段AB的中點,D為線段AC上一點,AC=4,BD=5,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,M為線段AB的中點,N為線段MB上一點,且MN=
23
AM
,若MN=2,則線段AB的長度為
6
6

查看答案和解析>>

同步練習冊答案