【題目】在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分線,垂足為D,交AC于E.
(1)若∠ABE=45°,求∠EBC的度數(shù);
(2)若AB+BC=30,求△BCE的周長.

【答案】
(1)解:∵DE是AB的垂直平分線,

∴EA=EB,

∴∠A=ABE=45°,

∵AB=AC,

∴∠ABC=∠C,

∴2∠ABC+∠A=180°,

即2∠ABC+45°=180°,

∴∠ABC=67.5°,

∴∠EBA=∠ABC﹣∠ABE=22.5°


(2)解:∵DE是AB的垂直平分線,

∴EA=EB,

∴△BCE的周長=BC+CE+EB

=BC+CE+EA

=BC+AC

=BC+AB

=30


【解析】(1)由DE是AB的垂直平分線可得AE=BE,即可求得∠A=∠ABE=45°,又由AB=AC,∠A=45°,即可求得∠ABC的度數(shù),繼而求得答案;(2)由△BCE的周長=AC+BC,而AB=AC,即可求得答案.
【考點精析】本題主要考查了線段垂直平分線的性質(zhì)和等腰三角形的性質(zhì)的相關(guān)知識點,需要掌握垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線;線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點和這條線段兩個端點的距離相等;等腰三角形的兩個底角相等(簡稱:等邊對等角)才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,AB=AC。

(1)若D為AC的中點,BD把三角形的周長分為24cm和30cm兩部分,求△ABC三邊的長;
(2)若D為AC上一點,試說明AC>(BD+DC)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八(3)班同學到野外上數(shù)學活動課,為測量池塘兩端A、B的距離,設(shè)計了如下方案:
(Ⅰ)如圖1,先在平地上取一個可直接到達A、B的點C,連接AC、BC,并分別延長AC至D,BC至E,使DC=AC,EC=BC,最后測出DE的距離即為AB的長;
(Ⅱ)如圖2,先過B點作AB的垂線,再在BF上取C、D兩點使BC=CD,接著過D作BD的垂線DE,交AC的延長線于E,則測出DE的長即為AB的距離.
閱讀回答下列問題:

(1)方案(Ⅰ)是否可行?請說明理由.
(2)方案(Ⅱ)是否可行?請說明理由.
(3)方案(Ⅲ)中作BF⊥AB,ED⊥BF的目的是;若僅滿足∠ABD=∠BDE≠90°,方案(Ⅱ)是否成立?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=AC,點D是BC的中點,點E是AD上任意一點.
(1)如圖1,連接BE、CE,問:BE=CE成立嗎?并說明理由;

(2)如圖2,若∠BAC=45°,BE的延長線與AC垂直相交于點F時,問:EF=CF成立嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某地方政府決定在相距50km的A、B兩站之間的公路旁E點,修建一個土特產(chǎn)加工基地,且使C、D兩村到E點的距離相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E應建在離A站多少千米的地方?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB交AB于E,F(xiàn)在AC上,∠B=∠CFD. 證明:

(1)CF=EB
(2)AB=AF+2EB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某食品包裝袋上標有“凈含量385±5”,這包食品的合格凈含量范圍是克~390克.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ABC中,AB=AC,D、E是△ABC內(nèi)兩點,AD平分∠BAC.∠EBC=∠E=60°,若BE=6,DE=2,則BC的長度是(
A.6
B.8
C.9
D.10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( )

A. 2x23x2=5x2 B. 6x2y3+2xy2=3xy

C. 2x33x2=6x6 D. (a+b)2=a22ab+b2

查看答案和解析>>

同步練習冊答案