(2003•岳陽(yáng))如圖,已知直線a∥b,并且a、b被直線c所截.若∠1=70°,則∠2=    度.
【答案】分析:根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)以及對(duì)頂角性質(zhì)即可解答.
解答:解:∵∠1=70°,∠3與∠1是對(duì)頂角,
∴∠3=∠1=70°;
又∵直線a∥b,
∴∠2+∠3=180°,
即∠2=180°-∠3=180°-70°=110°.
點(diǎn)評(píng):本題應(yīng)用的知識(shí)點(diǎn)為:兩直線平行,同旁內(nèi)角互補(bǔ);對(duì)頂角相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(03)(解析版) 題型:解答題

(2003•岳陽(yáng))如圖,點(diǎn)M(,0)為Rt△OED斜邊上的中點(diǎn),O為坐標(biāo)原點(diǎn),∠ODE=90°,過(guò)D作AB⊥DM交x軸的正半軸于A點(diǎn),交y軸的正半軸于B點(diǎn),且sin∠OAB=
(1)求:過(guò)E、D、O三點(diǎn)的二次函數(shù)解析式.
(2)問(wèn)此拋物線頂點(diǎn)C是否在直線AB上,請(qǐng)予以證明;若頂點(diǎn)不在AB上,請(qǐng)說(shuō)明理由.
(3)試在y軸上作出點(diǎn)P,使PC+PE為最小,并求出P點(diǎn)的坐標(biāo)(不寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年湖南省岳陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•岳陽(yáng))如圖,點(diǎn)M(,0)為Rt△OED斜邊上的中點(diǎn),O為坐標(biāo)原點(diǎn),∠ODE=90°,過(guò)D作AB⊥DM交x軸的正半軸于A點(diǎn),交y軸的正半軸于B點(diǎn),且sin∠OAB=
(1)求:過(guò)E、D、O三點(diǎn)的二次函數(shù)解析式.
(2)問(wèn)此拋物線頂點(diǎn)C是否在直線AB上,請(qǐng)予以證明;若頂點(diǎn)不在AB上,請(qǐng)說(shuō)明理由.
(3)試在y軸上作出點(diǎn)P,使PC+PE為最小,并求出P點(diǎn)的坐標(biāo)(不寫(xiě)作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(10)(解析版) 題型:解答題

(2003•岳陽(yáng))如圖:⊙O為△ABC的外接圓,∠C=60°,過(guò)C作⊙O的切線,交AB的延長(zhǎng)線于P,∠APC的平分線和AC、BC分別相交于D、E.
(1)證明:△CDE是等邊三角形;
(2)證明:PD•DE=PE•AD;
(3)若PC=7,S△PCE=,求作以PE、DE的長(zhǎng)為根的一元二次方程;
(4)試判斷E點(diǎn)是否能成為PD的中點(diǎn)?若能,請(qǐng)說(shuō)明必需滿足的條件,同時(shí)給出證明;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《相交線與平行線》(01)(解析版) 題型:填空題

(2003•岳陽(yáng))如圖,已知直線a∥b,并且a、b被直線c所截.若∠1=70°,則∠2=    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(09)(解析版) 題型:解答題

(2003•岳陽(yáng))如圖,在正方形ABCD中,E是AB的中點(diǎn),連接CE,過(guò)B作BF⊥CE交AC于F.求證:CF=2FA.

查看答案和解析>>

同步練習(xí)冊(cè)答案