如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,-2),精英家教網(wǎng)直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出F點的坐標;若不存在,請說明理由.
分析:(1)將點A(1,0),B(2,0),C(0,-2)代入二次函數(shù)y=ax2+bx+c中,列方程組求a、b、c即可;
(2)因為D、O分別為兩個直角三角形的頂點,可分為△EDB∽△AOC,△BDE∽△AOC兩種情況,利用相似比求ED,確定E點坐標;
(3)假設拋物線上存在一點F,使得四邊形ABEF為平行四邊形,EF=AB=1,點F的橫坐標為m-1,分為①當點E1的坐標為(m,
2-m
2
)時,點F1的坐標為(m-1,
2-m
2
),②當點E2的坐標為(m,4-2m)時,點F2的坐標為(m-1,4-2m),兩種情況,分別代入拋物線解析式求m的值,確定F點的坐標.
解答:解:(1)將點A(1,0),B(2,0),C(0,-2)代入二次函數(shù)y=ax2+bx+c中,得
a+b+c=0
4a+2b+c=0
c=-2

解得a=-1,b=3,c=-2.
∴y=-x2+3x-2.(2分)

(2)∵AO=1,CO=2,BD=m-2,
當△EDB∽△AOC時,得
AO
ED
=
CO
BD
,
1
ED
=
2
m-2
,解得ED=
m-2
2
,
∵點E在第四象限,
∴E1(m,
2-m
2
),精英家教網(wǎng)
當△BDE∽△AOC時,
AO
BD
=
CO
ED
時,即
1
m-2
=
2
ED
,
解得ED=2m-4,
∵點E在第四象限,
∴E2(m,4-2m);

(3)假設拋物線上存在一點F,使得四邊形ABEF為平行四邊形,則
EF=AB=1,點F的橫坐標為m-1,
當點E1的坐標為(m,
2-m
2
)時,點F1的坐標為(m-1,
2-m
2
),
∵點F1在拋物線的圖象上,
2-m
2
=-(m-1)2+3(m-1)-2,
∴2m2-11m+14=0,
∴(2m-7)(m-2)=0,
∴m=
7
2
,m=2(舍去),
∴F1
5
2
,-
3
4
),
當點E2的坐標為(m,4-2m)時,點F2的坐標為(m-1,4-2m),
∵點F2在拋物線的圖象上,
∴4-2m=-(m-1)2+3(m-1)-2,
∴m2-7m+10=0,
∴(m-2)(m-5)=0,∴m=2(舍去),m=5,
∴F2(4,-6).
點評:本題考查了二次函數(shù)的綜合運用.關鍵是求二次函數(shù)解析式,利用相似三角形,平行四邊形的性質,列方程求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)圖象的頂點坐標為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點,其中A點坐標為(
5
2
,
13
4
),B點在y軸上,直線與x軸的交點為F,P為線段AB上的一個動點(點P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點.
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點,在線段AB上是否存在點P,使得以點P、E、D為頂點的精英家教網(wǎng)三角形與△BOF相似?若存在,請求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點A(-1,0)和點B(3,0)兩點(點A在點B的左邊),與y軸交于點C.
(1)求此二次函數(shù)的解析式,并寫出它的對稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點D(不與點B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點的三角形與△BAC相似?若存在,求出點D的坐標;若不存在,請說明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓半徑的長度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點坐標為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點,其中點A的坐標為(3,4),點B在y軸上.點P為線段AB上的一個動點(點P與A、B不重合),過點P作x軸的垂線與該二次函數(shù)的圖象交于點E.
(1)求b的值及這個二次函數(shù)的關系式;
(2)設線段PE的長為h,點P的橫坐標為x,求h與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)若點D為直線AB與該二次函數(shù)的圖象對稱軸的交點,則四邊形DCEP能否構成平行四邊形?如果能,請求出此時P點的坐標;如果不能,請說明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請求出點P的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標軸交于點A(-1,0)和點C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個交點B的坐標.
(2)在上面所求二次函數(shù)的對稱軸上存在一點P(2,-2),連接OP,找出x軸上所有點M的坐標,使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數(shù)的解析式;
(2)設該二次函數(shù)圖象的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點為D,在y軸上是否存在一點P,使得△PAD的周長最小?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案