8、如圖,已知△ABC中,AD為高,且AB+CD=AC+BD,求證AB=AC.
分析:通過(guò)勾股定理得出等式AB2-BD2=AC2-CD2,與已知等式聯(lián)立得AB+BD=AC+CD,從而得出最后結(jié)果.
解答:證明:∵三角形ABD和ACD是直角三角形,
∴AB2-BD2=AC2-CD2①,
又由AB+CD=AC+BD得:
AB-BD=AC-CD②,
由①②得:
AB+BD=AC+CD③,
聯(lián)立公式①③得:
AB=AC.
點(diǎn)評(píng):本題主要考查了勾股定理的運(yùn)用,要掌握勾股定理的含義:在任何一個(gè)直角三角形中,兩條直角邊長(zhǎng)的平方之和一定等于斜邊長(zhǎng)的平方.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,P是AB上一點(diǎn),連接CP,以下條件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h(yuǎn)=4,D為BC上一點(diǎn),EF∥BC交AB于E,交AC于F(EF不過(guò)A、B),設(shè)E到BC的距離為x,△DEF的面積為y,那么y關(guān)于x的函數(shù)圖象大致是( �。�

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點(diǎn),則下列結(jié)論不正確的是( �。�

查看答案和解析>>

同步練習(xí)冊(cè)答案