(2000•紹興)如圖,⊙O的直徑AB與弦CD交于點(diǎn)M,AE⊥CD,BF⊥CD.若CM=4,MD=3,BF:AE=1:3,則⊙O的半徑是( )

A.4
B.5
C.6
D.8
【答案】分析:設(shè)圓的半徑為R,作OH⊥CD,根據(jù)垂徑定理,可證點(diǎn)H是CD的中點(diǎn),又根據(jù)平行線的判定和性質(zhì),可證點(diǎn)M是OB的中點(diǎn),最后由勾股定理得,求得R=4.
解答:解:設(shè)圓的半徑為R,作OH⊥CD,
則點(diǎn)H是CD的中點(diǎn),CH=HD=CD=,HM=HD-DM=,
∵AE⊥CD,BF⊥CD,
∴AE∥FB,MB:AM=BF:AE=1:3,AO=OB,
∴MB=MO,
∴點(diǎn)M是OB的中點(diǎn),
由勾股定理得,OH2=OM2-FM2=OC2-CH2
即(2-(2=R2-(2,
解得R=4.
故選A.
點(diǎn)評(píng):本題利用了垂徑定理,平行線的判定和性質(zhì),勾股定理求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2000•紹興)如圖,以⊙O兩條互相垂直的直徑所在直線為軸建立平面直角坐標(biāo)系,兩坐標(biāo)軸交⊙O于A,B,C,D四點(diǎn),點(diǎn)P在弧CD上,連PA交y軸于點(diǎn)E,連CP并延長(zhǎng)交y軸于點(diǎn)F.
(1)求∠FPE的度數(shù);
(2)求證:OB2=OE•OF;
(3)若⊙O的半徑為,以線段OE,OF的長(zhǎng)為根的一元二次方程為x2-x+m=0,求直線CF的解析式;
(4)在(3)的條件下,過(guò)點(diǎn)P作⊙O的切線PM與x軸交于點(diǎn)M,求△PCM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年浙江省紹興市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2000•紹興)如圖,以⊙O兩條互相垂直的直徑所在直線為軸建立平面直角坐標(biāo)系,兩坐標(biāo)軸交⊙O于A,B,C,D四點(diǎn),點(diǎn)P在弧CD上,連PA交y軸于點(diǎn)E,連CP并延長(zhǎng)交y軸于點(diǎn)F.
(1)求∠FPE的度數(shù);
(2)求證:OB2=OE•OF;
(3)若⊙O的半徑為,以線段OE,OF的長(zhǎng)為根的一元二次方程為x2-x+m=0,求直線CF的解析式;
(4)在(3)的條件下,過(guò)點(diǎn)P作⊙O的切線PM與x軸交于點(diǎn)M,求△PCM的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2000•紹興)如圖,△ABC中,∠ACB=Rt∠,CD⊥AB于點(diǎn)D,若BD:AD=1:4,則tan∠BCD的值是( )

A.
B.
C.
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(01)(解析版) 題型:選擇題

(2000•紹興)如圖,以O(shè)B為直徑的半圓與半圓O交于點(diǎn)P,A、O、C、B在同一條直線上,作AD⊥AB與BP的延長(zhǎng)線交于點(diǎn)D,若半圓O的半徑為2,∠D的余弦值是方程3x2-10x+3=0的根,則AB的長(zhǎng)等于( )

A.
B.
C.8
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2000年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(01)(解析版) 題型:選擇題

(2000•紹興)如圖,梯形ABCD中,AD∥BC,∠ABC=Rt∠,對(duì)角線AC⊥BD于P點(diǎn).已知AD:BC=3:4,則BD:AC的值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案