(本題滿分10分)如圖,在平面直角坐標系中,O為坐標原點,P是反比例函數(shù)
y=(x>0)圖象上的任意一點,以P為圓心,PO為半徑的圓與x、y軸分別交于點A、
B.
(1)判斷P是否在線段AB上,并說明理由;
(2)求△AOB的面積;
(3)Q是反比例函數(shù)y=(x>0)圖象上異于點P的另一點,請以Q為圓心,QO
半徑畫圓與x、y軸分別交于點M、N,連接AN、MB.求證:AN∥MB.
解:(1)點P在線段AB上,理由如下:
∵點O在⊙P上,且∠AOB=90°
∴AB是⊙P的直徑
∴點P在線段AB上.
(2)過點P作PP1⊥x軸,PP2⊥y軸,由題意可知PP1、PP2是△AOB的中位線,故
S△AOB=OA×OB=×2 PP1×PP2
∵P是反比例函數(shù)y=(x>0)圖象上的任意一點
∴S△AOB=OA×OB=×2 PP1×2PP2=2 PP1×PP2=12.
(3)如圖,連接MN,則MN過點Q,且S△MON=S△AOB=12.
∴OA·OB=OM·ON
∴
∵∠AON=∠MOB
∴△AON∽△MOB
∴∠OAN=∠OMB
∴AN∥MB.
【解析】略
科目:初中數(shù)學 來源: 題型:
(本題滿分10分)
如圖,將OA = 6,AB = 4的矩形OABC放置在平面直角坐標系中,動點M、N以每秒1個單位的速度分別從點A、C同時出發(fā),其中點M沿AO向終點O運動,點N沿CB向終點B運動,當兩個動點運動了t秒時,過點N作NP⊥BC,交OB于點P,連接MP.
(1)點B的坐標為 ;用含t的式子表示點P的坐標為 ;(3分)
(2)記△OMP的面積為S,求S與t的函數(shù)關系式(0 < t < 6);并求t為何值時,S有最大值?(4分)
(3)試探究:當S有最大值時,在y軸上是否存在點T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點T的坐標;若不存在,請說明理由.(3分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2011年江蘇省泰州市中考數(shù)學試卷 題型:解答題
(本題滿分10分)如圖,以點O為圓心的兩個同心圓中,矩形ABCD的邊BC為大圓的弦,邊AD與小圓相切于點M,OM的延長線與BC相交于點N。
(1)點N是線段BC的中點嗎?為什么?
(2)若圓環(huán)的寬度(兩圓半徑之差)為6cm,AB=5cm,BC=10cm,求小圓的半徑。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com