年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
根據(jù)下列表格中的對應(yīng)值,判斷方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的個數(shù)是( 。
A.0 B.1 C.2 D.1或2
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | 0.02 | -0.01 | 0.02 | 0.04 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
九年級(10)班數(shù)學(xué)進(jìn)行了六次測試,其中李明六次成績分別為:110、98、97、103、105、105,則他的中位數(shù)和眾數(shù)分別是( )
A.100、105 B.104、105 C.105、105 D.103、105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
同學(xué)們我們知道,直線是恒過定點(0,0)的一條直線,那么你能發(fā)現(xiàn)直線
+k經(jīng)過的定點為 ,用類比的思想和數(shù)形結(jié)合的方法接著完成下列兩題:(1)求證:無論a為何值,拋物線.
(2)是否存在實數(shù)a,使二次函數(shù)在范圍的最值是4?若存在,求a的范圍,若不存在,請說明理由?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線:經(jīng)過點一組拋物線的頂點(為正整數(shù))依次是直線上的點,這組拋物線與軸正半軸的交點依次是:(為正整數(shù)),設(shè)若拋物線的頂點與軸的兩個交點構(gòu)成的三角形是直角三角形,則我們把這種拋物線就稱為:“美麗拋物線”.則當(dāng)的大小變化時美麗拋物線相應(yīng)的的值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖在平面直角坐標(biāo)系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負(fù)半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A ,B和點 D(4, )
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達(dá)終點,則另一點也停止運(yùn)動,設(shè)P、Q兩點移動的時間為t秒,S=PQ2(厘米2)
寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍,當(dāng)t為何值時,S最;
(3)當(dāng)s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標(biāo);如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com