【題目】如圖,在ABC中,

①若AD是∠BAC的平分線,則∠_______=_______=________;

②若AE=CE,則BEAC邊上的___________________;

③若CFAB邊上的高,則∠____=______=90°,CF__________AB

【答案】 BAD; CAD BAC; 中線; AFC BFC;

【解析】

①根據(jù)三角形的角平分線和角平分線的定義即可解答;
②根據(jù)三角形中線和線段中線的定義解答;
③根據(jù)三角形的高和垂直的定義解答.

ABC中,
①若AD是∠BAC的平分線,則∠BAD=CAD=BAC;
②若AE=CE,則BEAC邊上的中線;
③若CFAB邊上的高,則∠AFC=BFC=90°,CFAB.
故答案為:BAD,CAD,BAC,中線,AFC,BFC,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖所示,直線y=-x+3與坐標(biāo)軸分別交于點(diǎn)A,B,與直線y=x交于點(diǎn)C,線段OA上的點(diǎn)Q以每秒1個(gè)單位的速度從點(diǎn)O出發(fā)向點(diǎn)A作勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,連結(jié)CQ.

(1)求出點(diǎn)C的坐標(biāo);

(2)OQC是等腰直角三角形,則t的值為________;

(3)CQ平分OAC的面積,求直線CQ對(duì)應(yīng)的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列變形中:

①由方程=2去分母,得x﹣12=10;

②由方程x=兩邊同除以,得x=1;

③由方程6x﹣4=x+4移項(xiàng),得7x=0;

④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).

錯(cuò)誤變形的個(gè)數(shù)是( 。﹤(gè)

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CD是AB邊上的中線,E是CD的中點(diǎn),過(guò)點(diǎn)C作AB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF.
(1)求證:CF=AD;
(2)若CA=CB,∠ACB=90°,試判斷四邊形CDBF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(閱讀材料)

平面直角坐標(biāo)系中,點(diǎn)P(x,y)的橫坐標(biāo)x的絕對(duì)值表示為|x|,縱坐標(biāo)y的絕對(duì)值表示為|y|,我們把點(diǎn)P(x,y)的橫坐標(biāo)與縱坐標(biāo)的絕對(duì)值之和叫做點(diǎn)P(x,y)的勾股值,記為[P],即[P]=|x|+|y|(其中的“+“是四則運(yùn)算中的加法),例如點(diǎn)P(1,2)的勾股值[P]=|1|+|2|=3.

(解決問(wèn)題)

(1)求點(diǎn)A(-2.4),B(+-)的勾股值[A],[B];

(2)若點(diǎn)Mx軸的上方,其橫,縱坐標(biāo)均為整數(shù),且[M]=3,請(qǐng)直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小平所在的學(xué)習(xí)小組發(fā)現(xiàn),車輛轉(zhuǎn)彎時(shí),能否順利通過(guò)直角彎道的標(biāo)準(zhǔn)是,車輛是否可以行駛到和路的邊界夾角是45°的位置(如圖1中②的位置).例如,圖2是某巷子的俯視圖,巷子路面寬4m,轉(zhuǎn)彎處為直角,車輛的車身為矩形ABCD,CD與DE、CE的夾角都是45°時(shí),連接EF,交CD于點(diǎn)G,若GF的長(zhǎng)度至少能達(dá)到車身寬度,即車輛能通過(guò).
(1)小平認(rèn)為長(zhǎng)8m,寬3m的消防車不能通過(guò)該直角轉(zhuǎn)彎,請(qǐng)你幫他說(shuō)明理由;
(2)小平提出將拐彎處改為圓。 是以O(shè)為圓心,分別以O(shè)M和ON為半徑的。,長(zhǎng)8m,寬3m的消防車就可以通過(guò)該彎道了,具體的方案如圖3,其中OM⊥OM′,你能幫小平算出,ON至少為多少時(shí),這種消防車可以通過(guò)該巷子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD各頂點(diǎn)的坐標(biāo)分別為(-2,8),(-11,6),(-14,0),(0,0).

(1)確定這個(gè)四邊形的面積,你是怎樣做的?

(2)如果把四邊形ABCD各頂點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)增加2,所得的四邊形面積又是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有三個(gè)有理數(shù)a,b,c,已知a=,(n為正整數(shù))且a與b互為相反數(shù),b與c互為倒數(shù).

(1)當(dāng)n為奇數(shù)時(shí)你能求出a,b,c各是幾嗎?

(2)當(dāng)n為偶數(shù)時(shí),你能求a,b,c三數(shù)嗎?若能請(qǐng)算出結(jié)果,不能請(qǐng)說(shuō)明理由.

(3)根據(jù)(1)中的結(jié)論,求:ab﹣b﹣(b﹣c)2015的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是直線AB上任一點(diǎn),射線OD和射線OE分別平分AOCBOC

(1)填空:與AOE互補(bǔ)的角是 ;

(2)若AOD=36°,求DOE的度數(shù);

(3)當(dāng)AOD=x°時(shí),請(qǐng)直接寫出DOE的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案